\(\widehat{A}\) = 90 độ, AH = 9,6 cm; AC = 16cm.Tính BH,HC

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2022

Xét tam giác ABC vuông A, đcao AH

\(HC=\sqrt{AC^2-AH^2}=\sqrt{16^2-9,6^2}=12,8\left(cm\right)\)

\(BH=\dfrac{AH^2}{HC}=\dfrac{9,6^2}{12,8}=7,2\left(cm\right)\)

8 tháng 9 2022

Viết các điểm bạn phải viết bằng chữ cái in hoa. Ngoài ra H là điểm nào bạn không nói rõ thì làm sao tính được. Theo mình nghĩ chắc đề thì AH là đường cao.

21 tháng 9 2019

Bài 2:

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)\(AH\perp BC\)

\(\Rightarrow AH^2=HB.HC\)(Hệ thức lượng)

\(AH^2=25.64\)

\(AH=\sqrt{1600}=40cm\)

Xét \(\Delta ABH\)\(\widehat{H}=90^o\)

\(\Rightarrow\tan B=\frac{AH}{BH}\)\(=\frac{40}{25}=\frac{8}{5}\)

\(\Rightarrow\widehat{B}\approx58^o\)

Xét \(\Delta ABC\)có \(\widehat{A}=90^o\)

\(\Rightarrow\widehat{B}+\widehat{C}=90^o\)

\(58^o+\widehat{C}=90^o\)

\(\Rightarrow\widehat{C}\approx90^o-58^o\)

\(\widehat{C}\approx32^o\)

15 tháng 10 2017

Nếu BC2 = AC+ AB2 thì tam giác ABC vuông tại A. (Pytago)

ta có: 7,52 =  4,52 + 62 => tam giác ABC vuông tại A.

Tam giác ABC vuông tại A, đường cao AH nên: AH.BC = AC.AB <=> AH = (AC.AB)/BC <=> AH = 3,6 cm

Ta có: AB2 = BC.BH <=> BH = AB2 /BC <=> 36/7,5 = 4,8 cm

=> HC = BC - BH = 7.5 - 4.8 = 2.7 cm

15 tháng 10 2017

vẽ hình nữa nha

2 tháng 9 2018

Áp dụng định lý Pi-ta-go trong △BHA vuông tại H⇒AB2=AH2+BH2=AH2+81

Áp dụng hệ thức lượng trong tam giác vuông ABC vuông tại A có đường cao AH⇒\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}=\dfrac{1}{AH^2+81}+\dfrac{1}{400}=\dfrac{400+AH^2+81}{400\left(AH^2+81\right)}=\dfrac{481+AH^2}{400\left(AH^2+81\right)}\Rightarrow400\left(AH^2+81\right)=AH^2\left(481+AH^2\right)\Rightarrow400AH^2+32400=481AH^2+AH^4\Rightarrow AH^4+81AH^2-32400\Rightarrow AH^2=144\Rightarrow AH=12\left(cm\right)\)Áp dụng hệ thức lượng trong tam giác vuông ABC vuông tại A có đường cao AH⇒AH2=BH.CH⇒\(CH=\dfrac{AH^2}{BH}=\dfrac{144}{9}=16\left(cm\right)\)

Ta có BC=CH+BH=9+16=25(cm)

2 tháng 9 2018

Ta có: AC2 = CH.BC

<=> AC2 = (BC - BH) . BC

<=> 202 = (BC - 9) . BC => BC = \(\left[{}\begin{matrix}16cm\left(n\right)\\-25cm\left(l\right)\end{matrix}\right.\)

Ta có: AH2 = BH.CH

<=> AH2 = 9 . (16 - 9 ) => AH \(\approx\) 7,9cm

1 tháng 8 2017

ban tu ve hinh nha

ta co \(\frac{AB}{AC}=\frac{3}{4}\Rightarrow\frac{AB}{3}=\frac{AC}{4}=\frac{AB+AC}{3+4}=\frac{21}{7}=3\)

 \(\Rightarrow AB=9,AC=12\)

ap dung dl pitago vao tam giac ABC vuong  tai A

\(AB^2+AC^2=BC^2\Rightarrow BC=15\)

B. ap dung he thuc luong trong tam gia vuong ABC co 

\(AH\cdot BC=AC\cdot AB\Rightarrow AH=\frac{12\cdot9}{15}=7,2\) 

\(AB^2=BH\cdot CB\Rightarrow BH=\frac{9^2}{15}=5.4\)\(\Rightarrow CH=BC-BH=15-5,4=9.6\)

a: Xét ΔABC có \(BC^2=AB^2+AC^2\)

nên ΔABC vuông tại A

Xét ΔABC vuông tại A có \(\sin B=\dfrac{AC}{BC}=\dfrac{4}{5}\)

nên \(\widehat{B}=53^0\)

=>\(\widehat{C}=37^0\)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

hay AH=4,8(cm)

20 tháng 5 2019

bai-98-trang-122-sach-bai-tap-toan-9-tap-1-3.PNG (292×165)

a. Ta có: AB2 = 62 = 36

AC2 = 4,52 = 20,25

BC2 = 7,52 = 56,25

Vì AB2 + AC2 = 36 + 20,25 = 56,25 = BC2 nên tam giác ABC vuông tại A (theo định lí đảo Pi-ta-go)

Kẻ AH ⊥ BC

Ta có: AH.BC = AB.AC

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9 b. Tam giác ABC và tam giác MBC có chung cạnh đáy BC, đồng thời SABC = SMBC nên khoảng cách từ M đến BC bằng khoảng cách từ A đến BC. Vậy M thay đổi cách BC một khoảng bằng AH nên M nằm trên hai đường thẳng x và y song song với BC cách BC một khoảng bằng AH.