Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Py-ta-go vào tam giác AMB vuông tại A, ta có:
\(BM^2=MA^2+AB^2\)
mà \(MA=\frac{1}{2}AC\)Suy ra: \(BM^2=\left(\frac{1}{2}AC^{ }\right)^2+AB^2=\frac{AC^2}{4}+AB^2\)(1)
Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A có:
\(BC^2=AB^2+AC^2\Leftrightarrow BC^2=\frac{AC^2}{4}+\frac{3AC^2}{4}+AB^2\)
\(\Leftrightarrow\frac{AC^2}{4}+AB^2=BC^2-\frac{3}{4}AC^2\)(2)
Từ (1) và (2) suy ra \(BM^2=BC^2-\frac{3}{4}AC^2\)
\(\text{Bn hỏi từ từ từng câu 1 thôi}\)
\(\text{Bn hỏi thế ai mà dám làm}\)
~~~~~~~~~~~~~
~~~~~~~~~~~
~~~~~~~~~~~~
Chí lí
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
sọ ghi 2 hàng khoogn đc tích tăng lê hiều hàng
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~````
Vì M là trung điểm của AC nên \(AM=\frac{1}{2}AC\)
Áp dụng định lý Pythagoras vào tam giác ABM vuông tại A, ta được:
\(AB^2+AM^2=BM^2\)
hay \(AB^2+\left(\frac{1}{2}BC\right)^2=BM^2\Leftrightarrow AB^2+\frac{1}{4}BC^2=BM^2\)
\(\Leftrightarrow AB^2=BM^2-\frac{1}{4}AC^2\)
Lại áp dụng định lý Pythagoras vào tam giác ABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
hay \(BM^2-\frac{1}{4}AC^2+AC^2=BC^2\)
\(\Leftrightarrow BM^2+\frac{3}{4}AC^2=BC^2\)
\(\Leftrightarrow BM^2=BC^2-\frac{3}{4}AC^2\)
Vậy \(BM^2=BC^2-\frac{3}{4}AC^2\)(đpcm)