Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A) XÉT \(\Delta ABC\)
CÓ: \(\widehat{A}+\widehat{AB}C+\widehat{ACB}=180^0\)( ĐỊNH LÍ)
THAY SỐ: \(85^0+40^0+\widehat{ACB}=180^0\)
\(\widehat{ACB}=180^0-85^0-40^0\)
\(\widehat{ACB}=55^0\)
\(\Rightarrow\widehat{A}>\widehat{ACB}>\widehat{ABC}(85^0>55^0>40^0)\)
\(\Rightarrow BC>AB>AC\)( ĐỊNH LÍ)
B) TA CÓ: \(\widehat{ABC}+\widehat{CBE}=180^0\)( KỀ BÙ)
THAY SỐ: \(40^0+\widehat{CBE}=180^0\)
\(\widehat{CBE}=180^0-40^0\)
\(\widehat{CBE}=140^0\)
TA CÓ: \(\widehat{BAC}+\widehat{DAC}=180^0\)(KỀ BÙ)
THAY SỐ: \(85^0+\widehat{DAC}=180^0\)
\(\widehat{DAC}=180^0-85^0\)
\(\widehat{DAC}=95^0\)
XÉT \(\Delta CBE\)
CÓ: \(\widehat{CBE}=140^0\)
\(\Rightarrow\widehat{CBE}\)LÀ GÓC LỚN NHẤT ( ĐỊNH LÍ)
MÀ CE LÀ CẠNH ĐỐI DIỆN VỚI \(\widehat{CBE}\)
\(\Rightarrow CE\)LÀ CẠNH LỚN NHẤT ( ĐỊNH LÍ)
\(\Rightarrow CE>CB\)( ĐỊNH LÍ) (1)
XÉT \(\Delta ACD\)
CÓ: AC =AD ( GT)
\(\Rightarrow\Delta ACD\)CÂN TẠI A ( ĐỊNH LÍ)
\(\Rightarrow\widehat{D}=\widehat{ACD}\)( TÍNH CHẤT)
MÀ \(\widehat{D}+\widehat{ACD}+\widehat{CAD}=180^0\)( ĐỊNH LÍ TỔNG 3 GÓC TRONG 1 TAM GIÁC)
\(\Rightarrow\widehat{D}+\widehat{D}+\widehat{CAD}=180^0\)
THAY SỐ: \(2\widehat{D}+95^0=180^0\)
\(\widehat{D}=\left(180^0-95^0\right):2\)
\(\widehat{D}=42,5^0\)
XÉT \(\Delta BCD\)
CÓ: \(\widehat{D}>\widehat{ABC}\left(42,5^0>40^0\right)\)
\(\Rightarrow CB>CD\)(ĐỊNH LÍ) (2)
TỪ (1) ; (2) \(\Rightarrow CE>CB>CD\)
MK KẺ HÌNH XẤU LẮM!! NÊN MK KO KẺ ĐÂU, BN KẺ GIÙM MK NHA!!!!!! THANKS
CHÚC BN HỌC TỐT!!!!!!
A B C M N
ta có góc C = 180-80-60=400
Ta có :
\(\widehat{ACN}+\widehat{ACB}=180^0\\ \Rightarrow\widehat{ACN}=180^0-40^0=140^0\)
Ta lại có : CA=CN
=> tam giác ACN cân
=> \(\widehat{CAN}=\widehat{N}\)
\(\Rightarrow\widehat{CAN}+\widehat{N}=180^0-140^0=40^0\\ \Rightarrow\widehat{CAN}=\widehat{N}=20^0\)
\(\widehat{ABM}+\widehat{B}=180^0\\ \Rightarrow\widehat{ABM}=180^0-60^0=120^0\)
Ta lại có :
BA=BM => tam giác ABM cân
=> \(\widehat{MAB}=\widehat{M}\\ \Rightarrow\widehat{MAB}+\widehat{M}=180^0-120^0=60^0\\ \Rightarrow\widehat{MAB}=\widehat{M}=30^0\)
\(\widehat{A}\) của tam giác AMN = \(20^0+30^0+80^0=130^0\)
Chúc bạn học tốt !!!
A B C D E I
a, Áp dụng định lý Pytago vào tam giác vuông ABC có:
AB2 + AC2 = BC2
92 + AC2 = 152
81 + AC2 = 225
AC2 = 225 - 81
AC2 = 144
AC = 12 (cm)
Xét tam giác ABC có: AB < AC < BC.
nên góc ACB < ABC < BAC ( đối diện với góc lớn hơn là cạnh lớn hơn )
b,do A là trung điểm BD (gt)
nên AB=DB
nên CA là đg trung tuyến.
Xét tam giác BCD có: CA vuông góc AB nên CA là đg cao
mà CA là đg trung tuyến.
nên tam giác BCD cân tại C
c,...
a) do tam giác ABC có \(\widehat{B}>\widehat{C}\)
\(\Rightarrow AB< AC\)
b) câu b đề bài bạn ghi sai hết sạch em kiểm tra lại đề nhé
câu b nè :
xét \(\Delta AMB\)và \(\Delta CMD\):
AM = DM ( gt)
\(\widehat{AMB}=\widehat{CMD}\)( đối đỉnh)
=> CD =
BM = CM ( gt)
=> \(\Delta AMB\)=\(\Delta CMD\)(c.g.c)
=>AB=CD ( 2 cạnh tương ứng)
câu còn lại dễ rồi bạn tự làm đi nehs ( vì mik phải đi học lun về r mik giải típ cho
XÉT \(\Delta ABC\)CÂN TẠI A
\(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{B}=\widehat{C}\end{cases}}\)
TA CÓ \(\widehat{A}+\widehat{B}+\widehat{C}=180^o\left(Đ/L\right)\)
THAY\(50^0+\widehat{B}+\widehat{C}=180^o\)
\(\widehat{B}+\widehat{C}=130^o\)
MÀ\(\widehat{B}=\widehat{C}\)
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{130^o}{2}=65^o\)
TA CÓ \(\widehat{DBA}+\widehat{ABC}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{DBA}=180^o-65^o=115^o\)
TA CÓ\(\widehat{ACE}+\widehat{ACB}=180^o\left(KB\right)\)
\(\Rightarrow\widehat{ACE}=180^o-65^0=115^o\)
XÉT \(\Delta ACE\)CÓ AC=CE (GT) =>\(\Delta ACE\)CÂN TẠI C
\(\Rightarrow\widehat{CAE}=\widehat{AEC}=\frac{180^o-115^0}{2}=32,5^0\)
XÉT \(\Delta ABD\)CÓ AB=BD (GT) =>\(\Delta ABD\)CÂN TẠI B
\(\Rightarrow\widehat{DAB}=\widehat{ADB}=\frac{180^o-115^0}{2}=32,5^0\)
TA CÓ\(\widehat{DAB}+\widehat{BAC}+\widehat{EAC}=\widehat{DAE}\)
THAY\(32,5^o+50^0+32,5^0=\widehat{DAE}\)
\(\Rightarrow\widehat{DAE}=115^0\)
Bài 3:
Xét 2 \(\Delta\) \(AMO\) và \(BNO\) có:
\(\widehat{MAO}=\widehat{NBO}=90^0\left(gt\right)\)
\(OA=OB\) (vì O là trung điểm của \(AB\))
\(AM=BN\left(gt\right)\)
=> \(\Delta AMO=\Delta BNO\left(c-g-c\right)\)
=> \(\widehat{MOA}=\widehat{NOB}\) (2 góc tương ứng)
Mà \(\widehat{MOA}+\widehat{MOB}=180^0\) (vì 2 góc kề bù)
=> \(\widehat{NOB}+\widehat{MOB}=180^0.\)
=> \(M,O,N\) thẳng hàng. (1)
Ta có: \(\Delta AMO=\Delta BNO\left(cmt\right)\)
=> \(OM=ON\) (2 cạnh tương ứng) (2)
Từ (1) và (2) => \(O\) là trung điểm của \(MN\left(đpcm\right).\)
Bài 4:
Chúc bạn học tốt!