Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔAMC và ΔDMB có
AM=DM(M là trung điểm của AD)
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB(M là trung điểm của BC)
Do đó: ΔAMC=ΔDMB(c-g-c)
⇒\(\widehat{CAM}=\widehat{BDM}\)(hai góc tương ứng)
mà \(\widehat{CAM}\) và \(\widehat{BDM}\) là hai góc ở vị trí so le trong
nên AC//BD(Dấu hiệu nhận biết hai đường thẳng song song)
b) Xét ΔAMB và ΔDMC có
AM=DM(M là trung điểm của AD)
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔAMB=ΔDMC(c-g-c)
⇒AB=CD(Hai cạnh tương ứng)
Ta có: ΔAMC=ΔDMB(cmt)
nên AC=BD(Hai cạnh tương ứng)
Xét ΔABC và ΔDCB có
AB=DC(cmt)
AC=DB(cmt)
BC chung
Do đó: ΔABC=ΔDCB(c-c-c)
a) tam giác ABC vuông tại A có:
AB2 + AC2 = BC2 (định lý py-ta-go)
=> 82 + AC2 = 102
=> AC2 = 102 - 82 = 36
=> AC = 6 (cm)
t i c k nha!!! 5645746775675687890890685674562451234142342334543
a)
áp dụng định lí py-ta-go, ta có:
AC2=BC2-AB2=102-82=36
AC=6
a:
Xét tam giác AHC và tam giác EHC có:
HA=HE(gt)
BA(chung)
CHA=CHE=90*
=> tam giác AHC=EHC(c.g.c)
=> AC=EC
xét tam giác AMC và tam giác DMB có:
MC=MB(gt)
MA=MD(gt)
góic CMA=DMB(đối đỉnh)
=> tam giác AMC= DMB(c.g.c)
=> AC=DB
AC=CE
=> CE=BD
b:
MC=MB(gt)
MA=MD(gt)
CMA=BMD
=> AMC=DMB(c.g.c)
a)Xét tam giác AMB và tam giác AMC có:
AB=AC(gt)
BM=MC(M là trung điểm BC)
AM: cạnh chung
=>tam giác AMB = tam giác AMC
b)Ta có góc AMB = góc AMC
Mà góc AMB+ góc AMC=180 độ
Nên góc AMB = góc AMC =180 độ/2=90 độ
vậy AM vuông với BC
c) không hiểu đề cho lắm
hình tự vẽ nha
Bài 1: Sửa đề: Chứng minh ΔABM=ΔACM
Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
Bài 2:
a: Xét ΔAMC và ΔDMB có
MA=MD
\(\widehat{AMC}=\widehat{DMB}\)(hai góc đối đỉnh)
MC=MB
Do đó: ΔAMC=ΔDMB
b: Xét ΔBAE có
BH là đường cao
BH là đường trung tuyến
Do đó: ΔBAE cân tại B
=>BA=BE