Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi I là giao điểm của AB và CD
Xét tam giác ADC và ABE ta có:
AD = AB ( do tam giác ABD đều )
góc DAC = góc BAE ( = góc BAC + 60 độ )
AC = AE ( do tam giác ACE đều )
=> Tam giác ADC = tam giác ABE ( c.g.c )
=> góc ADC = góc ABE ( 2 góc tương ứng )
Ta có : góc ADC = góc ABE
góc BIM = góc AID
=> \(180^o-\left(\widehat{ADC}+\widehat{AID}\right)=180^o-\left(\widehat{ABE}+\widehat{BIM}\right)\)
=> góc DAI = góc BMI = 60 độ
=> góc BMC = 180 độ - 60 độ = 120 độ
b) Trên cạnh MD lấy điểm F sao cho MB = MF
Tam giác BMF có : góc BMF = 60 độ; MB = MF
=> Tam giác BMF đều
=> MB = BF; góc MBF = 60 độ
Ta có : góc DBF = góc ABD - góc ABF = 60 độ - góc ABF
góc ABM = góc MBF - góc ABF = 60 độ - góc ABF
=> góc DBF = góc ABM
Xét tam giác AMB và tam giác DFB ta có :
MB = FB ( CM trên )
góc ABM = góc DBF ( CM trên )
AB = DB ( tam giác ABD đều )
=> Tam giác AMB = tam giác DFB ( c.g.c )
=> AM = DF ( 2 cạnh tương ứng )
=> AM + BM = DF + MF = MD ( đpcm )
c) Tam giác BMF đều => góc MFB = 60 độ
=> góc BFD = 180 độ - 60 độ = 120 độ
Tam giác AMB = tam giác DFB => góc AMB = góc BFD = 120 độ
Ta có : góc AMB + góc BMC + góc AMC = 360 độ
=> góc AMC = 360 độ - ( 120 độ + 120 độ ) = 120 độ
=> góc AMC = góc BMC ( đpcm )
Gt: ABC có 3 góc nhọn
Phía ngoài ABC các đều ABD; ACE. CD giao BE tại k
Kl: a/ Chứng minh BE = CD
b/ Góc BKC = ?
c/ Chứng minh KA + KB + KC = 1/2. (BE + CD)
Mk chỉ có thể làm cho bạn 1/4 điểm số của bài này thui!
Câu hỏi của Phạm Thùy Dung - Toán lớp 7 - Học toán với OnlineMath