K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2022

A B C D E  

Vì \(\widehat{BAC}=60^o\) nên \(\dfrac{AD}{AB}=\dfrac12\) (sẽ giải thích ở phần sau)

Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có:

\(\widehat{A}\) là góc chung

Nên \(\triangle ACE \backsim \triangle ABD (g.g) \text{theo tỉ số đồng dạng } k=\dfrac{AD}{AB}=\dfrac12\)

\(=> \dfrac{S_{\triangle{ADE}}}{S_{\triangle{ABC}}} = k^2=(\dfrac12)^2=\dfrac14\)

Vậy \( \dfrac{S_{\triangle{ADE}}}{S_{\triangle{ABC}}} = \dfrac14\)

Bình luận: Vì sao \(\dfrac{AD}{AB}=\dfrac12\)?

Chứng minh điều này như sau:

Kẻ đường trung tuyến DM của tam giác ABD.

Từ đây suy ra \(MD=\dfrac12 AB\) (định lý đường trung tuyến trong tam giác vuông)

Mà \(AM=\dfrac12 AB\) (do DM là trung tuyến)

Nên \(AM=MD\)

Do đó tam giác AMD cân tại M

Mà \(\widehat{MAD}=60^o\) (do \(\widehat{BAC}=60^o\))

Nên tam giác AMD đều

\(=>AM=AD\)

\(=>\dfrac{1}{2}AB=AD\) (DM trung tuyến)

\(=>\dfrac{AD}{AB}=\dfrac{1}{2}=>đpcm\)

25 tháng 3 2022

Vì \(\widehat{BAC}=60^o\) nên \(\dfrac{AD}{AB}=\dfrac12\) (sẽ giải thích ở phần sau)

Xét tam giác ABD vuông tại D và tam giác ACE vuông tại E có:

\(\widehat{A}\) là góc chung

Nên \(\triangle ACE \backsim \triangle ABD (g.g)\)

Từ đó tự suy ra \(\triangle ADE \backsim \triangle ABC (c.g.c) \text{ theo tỉ số đồng dạng }k=\dfrac{AD}{AB}=\dfrac12\) 

\(=> \dfrac{S_{\triangle{ADE}}}{S_{\triangle{ABC}}} = k^2=(\dfrac12)^2=\dfrac14\)

Vậy \( \dfrac{S_{\triangle{ADE}}}{S_{\triangle{ABC}}} = \dfrac14\)

Bình luận: Vì sao \(\dfrac{AD}{AB}=\dfrac12\)?

Chứng minh điều này như sau:

Kẻ đường trung tuyến DM của tam giác ABD.

Từ đây suy ra \(MD=\dfrac12 AB\) (định lý đường trung tuyến trong tam giác vuông)

Mà \(AM=\dfrac12 AB\) (do DM là trung tuyến)

Nên \(AM=MD\)

Do đó tam giác AMD cân tại M

Mà \(\widehat{MAD}=60^o\) (do \(\widehat{BAC}=60^o\))

Nên tam giác AMD đều

\(=>AM=AD\)

\(=>\dfrac{1}{2}AB=AD\) (DM trung tuyến)

\(=>\dfrac{AD}{AB}=\dfrac{1}{2}=>đpcm\)

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

góc A chung

=>ΔADB đồng dạng với ΔAEC

=>AD/AE=AB/AC

=>AD*AC=AB*AE;AD/AB=AE/AC

b: Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc DAE chung

=>ΔADE đồng dạng với ΔABC

=>góc ADE=góc ABC

d: ΔADE đồng dạngvới ΔABC

=>\(\dfrac{S_{ADE}}{S_{ABC}}=\left(\dfrac{AD}{AB}\right)^2=\dfrac{1}{4}\)

=>\(S_{ADE}=30\left(cm^2\right)\)

15 tháng 1 2019

tính góc hay j????

15 tháng 1 2019

A B C H D K

Lấy K là trung điểm CD thì HK là đường trung bình \(\Delta\)BCD => HK // BD và HK=BD/2

Từ HK=BD/2 và AH=BD/2 => \(\Delta\)AHK cân tại H => ^HAK = ^HKA. Mà ^HKA = ^ADB (Do HK //BD)

Nên ^HAK = ^ADB = ^ABC/2 + ^ACB hay ^BAC/2 = ^ABC/2 + ^ACB

<=> ^BAC = ^ABC + 2^ACB. Từ đó ta có hệ: \(\hept{\begin{cases}\widehat{BAC}=\widehat{ABC}+2\widehat{ACB}\\\widehat{ABC}+\widehat{BAC}+\widehat{ACB}=180^0\end{cases}}\)

Đến đây thì dễ rồi nhé !

tên các điểm bn tự đặt nha

a) ta có CK // HB ( do cùng vuông góc với AC)

              CH// BK (do cùng vuông góc với AB)

tứ giác BKCH có  CK // HB ,CH// BK => BKCH là hbh

b) ta có góc A+B+C+K = 180 (tổng các góc tứ giác)

                      A+K = 90

                          K= 30   

c) HBH. CHBK có M là trung điểm CB => M cũng là trung điểm của HK

d) ta có AH vuông góc BC, OM vuông góc BC => AH // OM

  tam giác AKH có AH//OM, KM=MH =>AO=OK (1)

từ O kẻ OS sao cho SA=SB

tam giác AKB có SA=SB, AO=OK => OS//BK 

 lại có BK vuông góc AB, OS// BK => OS vuông góc AB hay OS là đường trung trực tam giác ABC

=> OA=OB=OC(2)

từ 1 và 2 => OA=OB=OC=OK

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

\(\widehat{BAD}\) chung

Do đó:ΔABD\(\sim\)ΔACE

Suy ra: AB/AC=AD/AE
hay \(AB\cdot AE=AD\cdot AC\)

b: Xét ΔADE và ΔABC có

AD/AB=AE/AC

\(\widehat{DAE}\) chung

Do đó:ΔADE\(\sim\)ΔABC

Suy ra: \(\widehat{ADE}=\widehat{ABC}\)

9 tháng 3 2022

giups mk câu d mà bạn