K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 4 2020

A B C E D

Vì \(\Delta ACB\)cân tại A (gt)

=>AB=AC

Vì E và D lần lượt là trung điểm của AB và AC

=>AE=EB

    AD=DC

Mà AB=AC

=>AE=AD

=>\(\Delta AED\)cân ở A

5 tháng 3 2017

CM BNC=CMB

MC=BN ; \(\widehat{B}=\widehat{C}\) ; BC chung

\(\Rightarrow\)BM=CN

CM ABM=ACN

AB=AC ; AM=AN ; \(\widehat{A}\) chung

\(\Rightarrow\)ABM  =ACN \(\Rightarrow\) \(\widehat{ABM}=\widehat{ACN}\)

b     \(\widehat{ABM}=\widehat{ACN}\)  \(\Rightarrow\)\(\widehat{ABI}=\widehat{ACI}\)

    \(\Rightarrow\)   \(\widehat{AMB}=\widehat{ANC}\)\(\Rightarrow\)\(\widehat{BMC}=\widehat{CNB}\)

Xét BIN vs CIM : BN=CM ; \(\widehat{ACM}=\widehat{ACN};\)\(\widehat{BMC}=\widehat{CNB}\)

\(\Rightarrow\) IB=IC \(\Rightarrow\)IBC cân

c,  Xét AIB và AIC : IB =IC ; \(\widehat{ABI}=\widehat{ACI};AB=AC\)      
\(\Rightarrow\) \(\widehat{BAI}=\widehat{CAI}\)\(\Rightarrow\)AI pg góc A

d,      xét BAD và CAD

góc BAI = CAI ; AB=AC ; AD chung 

\(\Rightarrow\)góc ADB = ADC  mà chúng cộng nhau = 180 \(\Rightarrow\)\(\widehat{D}\)= 90

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
9 tháng 3 2018
Ta có : AB = AC ( tam giác ABC cân tại A) mà M, N lần lượt là trung điểm của AC và AB suy ra AN = AM Xét tam giác ABM và tam giác ACN có : Góc A : góc chung AM = AN ( cmt) AB = AC ( tam giác ABC cân tại A) Suy ra tam giác ABM = tam giác ACN ( c - g - c) Suy ra BM = CN ( 2 cạnh t/ứng) b/ Có tam giác ABM = tam giác ACN ( theo câu a) Suy ra góc ABM = góc ACN ( 2 góc t/ứng) Có góc ABM + góc MBC = góc B Góc ACN + góc NCB = góc C mà góc B = góc C (tam giác ABC cân tại A), góc ABM = góc ACN ( cmt) suy ra góc IBC = góc ICB suy ra tam giác IBC cân tại I c/ Có tam giác IBC cân tại B ( theo câu b) suy ra IB = IC Xét tam giác AIB và tam giác AIC có : AI : cạnh chung AB = AC (tam giác ABC cân tại A) IB = IC ( cmt) Suy ra tam giác AIB = tam giác AIC ( c - c - c) Suy ra góc BAI = góc CAI ( 2 góc t/ứng) mà AI nằm giữa 2 tia AB và AC Suy ra AI là tia phân giác góc A d/ Gọi H là giao điểm của AI và BC Xét tam giác AHB và tam giác AHC có : Góc B = góc C ( tam giác ABC cân tại A) AB = AC ( tam giác ABC cân tại A) Góc BAI = góc CAI ( AI là tia phân giác góc A) Suy ra tam giác AHB = tam giác AHC ( g - c - g) Suy ra góc AHB = góc AHC( 2 góc t/ứng) mà góc AHB + góc AHC = 180 độ suy ra AHB = 90 độ suy ra AI vuông góc với BC Bạn tự vẽ hình nhé
6 tháng 3 2018

minh can gap ik

27 tháng 1 2019

BẠN TỰ VẼ HÌNH NHA

ta có AM = MC = 1/2 AC ( M là trung đ AC )
         AN = NB = 1/2 AB ( N là trung đ AB )
   mà AB = AC ( tg ABC cân tại A)
=> AM = MC = AN = NB
tg ANC và tg AMB có
AB = AC ( gt )
^A chung
AN = AM ( cmt )
=> tg ANC = tg AMB ( c-g-c )
=> NC = BM ( 2 cạnh t/ứ ) ( đpcm )
=> ^ABM = ^ACN ( 2 góc t/ứ)   ( đpcm)
b,  vì tg ABC cân tại A => ^B =^C
mà ^ABM + ^IBC = ^B
      ^ ANC + ^ICB = ^C
=> ^ICB = ^IBC => tg IBC cân tại I

chúc bn hok tốt