Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trl:
a) Vì I thuộc đường trung trực của BC và AD(gt))
=> IB=IC và IA=ID (theo định lí đường trung trực).
Xét 2 ΔAIB và DIC có:
AI=DI(cmt)
AB=DC(gt)
IB=IC(cmt)
=> ΔAIB=ΔDIC(c−c−c).
b) Theo câu a) ta có ΔAIB=ΔDIC
=> BAIˆ=CDIˆ (2 góc tương ứng).
Xét ΔADIcó:
IA=ID(cmt)
=> ΔADI cân tại I.
=> ADIˆ=DAIˆ(tính chất tam giác cân).
Hay CDIˆ=CAIˆ.
Mà BAIˆ=CDIˆ(cmt)
=> BAIˆ=CAIˆ
=> AI là tia phân giác của BACˆ.
~Học tốt!~
a: XétΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó:ΔABM=ΔACM
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC
c: Xét ΔMCE có
CH là đường cao
CH là đường trung tuyến
Do đó: ΔMCE cân tại C
mà CA là đường cao
nên CA là tia phân giác của góc MCE
a )
Xét tam giác ABM và tam giác ACM có:
BM = MC ( vì M là trung điểm của BC )
AM là cạnh chung
AB = AC ( gt )
=> tam giác ABM = tam giác ACM ( c.c.c )
b) Xét tam giác AEH và tam giác CEM có:
EH = EM (gt)
góc AEM = góc MEC (2 góc đối đỉnh )
AE = EC ( vì E là trung điểm của AC )
=> tam giác AEK = tam giác CEM (c.g.c)
c) Câu này giải thích nhiều mà tớ không có thời gian nên không ghi ra được. Tích hay không tùy cậu
a: Xét ΔAMB vuông tại M và ΔAMC vuông tại M có
AB=AC
AM chung
Do đó: ΔAMB=ΔAMC
b: ΔAMB=ΔAMC
=>MB=MC
=>M là trung điểm của BC
Xét ΔGBC có
GM là đường cao
GM là đường trung tuyến
Do đó; ΔGBC cân tại G
c: Sửa đề: Trên tia đối của tia FB lấy H sao cho FG=FH
Xét ΔABC có
AM,BF là các đường trung tuyến
AM cắt BF tại G
Do đó: G là trọng tâm của ΔABC
=>BG=2GF
mà GH=2GF(F là trung điểm của GH)
nên BG=GH
=>G là trung điểm của BH
Xét ΔHBC có
G là trung điểm của HB
GI//BC
Do đó: I là trung điểm của HC
Xét ΔHGC có
CF,GI là các đường trung tuyến
CF cắt GI tại K
Do đó: K là trọng tâm của ΔHGC