K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2018

Bạn tự vẽ hình nha

a.Vì tam giác ABC cân tại A nên AB= AC và góc ABC = góc ACB

<=> góc ABM = góc ACN (vì các góc kề bù với nhau)

Xét tam giác ABM và tam giác ACN

Có: AB = AC (CMT)

      góc ABM = góc ACN (CMT)

      BM = CN (gt)

<=> tam giác ABM = tam giác ACN (c.g.c)

<=> AM = AN ( 2 góc tương ứng)

<=> tam giác AMN cân tại A

6 tháng 1 2018

b. Vì tam giác ABM = tam giác ACN (CMT)

<=> góc MAB = góc CAN ( 2 góc tương ứng)

Xét tam giác vuông AHB và tam giác vuông AKC

Có: AB= AC (CMT)

      góc AHB= góc AKC= 90 độ

     góc MAB = góc CAN (CMT)

<=> tam giác AHB = tam giác AKC ( cạnh huyền- góc nhọn)

25 tháng 1 2018

?????

21 tháng 1 2018

A B C M N H K
c) Xét tứ giác MNKH có:
MH=KN (do \(\Delta MHB=\Delta NKC\))
MH//KN ( cùng vuông góc với BC)

=> MNKH là hình bình hành
=> MN=HK và MN//HK (2 cạnh đối của hbh song song và bằng nhau) (đpcm)

 

7 tháng 2 2021

a/ Có \(\widehat{ABC}=\widehat{ACB}\) (t/g ABC cân tại A)

=> \(180^o-\widehat{ABC}=180^o-\widehat{ACB}\)

=> \(\widehat{ABH}=\widehat{ACK}\)

b/ Xét t/g ABH và t/g ACK có

AB = AC 

\(\widehat{ABH}=\widehat{ACK}\)

BH = CK

=> t/g ABH = t/g ACK (c.g.c)

=> AH = AK

=> t/g AHK cân tại A 

c/ Xét t/g BHM vuông tại M và t/g CKN vuông tại N có

BH = CK\(\widehat{AHK}=\widehat{AKH}\) (t/g AHK caantai A)

=> t/g BHM = t/g CKN (ch-gn)

=> BM = CNd/ Có

AH = AK 

HM = KN (t.g BHM = t/g CKN)

=> AM =AN

=> t/g AMN cân tại A 

=> \(\widehat{AMN}=\dfrac{180^o-\widehat{HAK}}{2}\)

Mà \(\widehat{AHK}=\dfrac{180^o-\widehat{HAK}}{2}\) (t/g AHK cân tại A)

=> \(\widehat{AMN}=\widehat{AHK}\)

Mà 2 góc này đồng vị

=> MN// HK

a) Ta có: \(\widehat{ABC}+\widehat{ABH}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{ACK}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{ABH}=\widehat{ACK}\)(đpcm)

b) Xét ΔABH và ΔACK có 

AB=AC(ΔABC cân tại A)

\(\widehat{ABH}=\widehat{ACK}\)(cmt)

BH=CK(gt)

Do đó: ΔABH=ΔACK(c-g-c)

nên AH=AK(hai cạnh tương ứng)

Xét ΔAHK có AH=AK(cmt)

nên ΔAHK cân tại A(Định nghĩa tam giác cân)

c) Xét ΔMHB vuông tại M và ΔNKC vuông tại N có

BH=CK(gt)

\(\widehat{H}=\widehat{K}\)(hai góc ở đáy của ΔAHK cân tại K)

Do đó: ΔMHB=ΔNKC(cạnh huyền-góc nhọn)

Suy ra: BM=CN(hai cạnh tương ứng)

d) Ta có: ΔMHB=ΔNKC(cmt)

nên MH=NK(hai cạnh tương ứng)

Ta có: AM+MH=AH(M nằm giữa A và H)

AN+NK=AK(N nằm giữa A và K)

mà AK=AH(cmt)

và MH=NK(cmt)

nên AM=AN

Xét ΔAMN có AM=AN(cmt)

nên ΔAMN cân tại A(Định nghĩa tam giác cân)

Ta có: ΔAMN cân tại A(cmt)

nên \(\widehat{AMN}=\dfrac{180^0-\widehat{MAN}}{2}\)(Số đo của một góc ở đáy trong ΔAMN cân tại A)

hay \(\widehat{AMN}=\dfrac{180^0-\widehat{HAK}}{2}\)(1)

Ta có: ΔAHK cân tại A(cmt)

nên \(\widehat{AHK}=\dfrac{180^0-\widehat{HAK}}{2}\)(Số đo của một góc ở đáy trong ΔAHK cân tại A)(2)

Từ (1) và (2) suy ra \(\widehat{AMN}=\widehat{AHK}\)

mà \(\widehat{AMN}\) và \(\widehat{AHK}\) là hai góc ở vị trí đồng vị

nên MN//HK(Dấu hiệu nhận biết hai đường thẳng song song)

4 tháng 3 2018

a) tam giác ABC cân 

=> góc ABC=góc ACB

góc MBA+góc ABC=180độ (kề bù)

góc NCA+góc ACB=180độ(kề bù)

=> góc ABM=góc ACN

xét 2 tam giác ABM và ACN có: 

AB=AC(tam giác ABC cân )

góc ABM=góc ACN(chứng minh trên)

BM=CN(gt)

=> 2 tam giác ABM=ACN(c.g.c)

=> AM=AN(2 cạnh tương ứng)

=> tam giác AMN cân ở A

b) tam giác AMN cân ở A

=> góc M=góc N

xét 2 tam giác MHB và NKC có:

góc MHB=góc NKC(=90độ)

MB=NC(gt)

góc M =góc N(chứng minh trên)

=> 2 tam giác MHB=NKC(cạnh huyền - góc nhọn)

=> BH=CK (2 cạnh tương ứng)

1 tháng 5 2015

1Tại sao lại B=2D,mà chưa hề có điểm B trong đề

2aDo tam giác ABC cân đỉnh A=>góc ABC=góc ACB

=>góc ABM=góc ACN(góc ABM+góc ABC=góc ACN+GÓC ACB)

2bTa có:góc ABM=góc ACN(CMT).

Xét tam giác ABM và tam giác ACN.Bạn tự chứng minh có bằng nhau(c.g.c)

=>AM=AN=>AMN là tam giác cân

3aDo tam giác ABC cân=>góc ABC=góc ACB

Xét hai tam giác vuông HBD và KCE(Cạnh huyền-Góc nhọn).Bạn tự chứng minh.=>HB=CK

3bDo tam giác ABC cân=>góc ABC=góc ACB=>góc ABH=góc ACK

Bạn tự chứng minh hai tam giác AHB và AKC bằng nhau(c.g.c).Nhớ phải sử dung HB=CK

3cTôi không hiểu đề

27 tháng 7 2017

~`!@#$%^&*()_-+=|\{[}]''":;>.<,?/

tớ chịu đầu hàng ?!

*_*   !   soryyy

a: Xét ΔABD và ΔACE có

AB=AC

góc ABD=góc ACE

BD=CE

=>ΔADB=ΔAEC

=>AD=AE
=>ΔADE cân tại A

b,c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

góc HAB=góc KAC

=>ΔAHB=ΔAKC

=>BH=CK

Xét ΔAMB vuông tại M và ΔANC vuông tại N có

AB=AC

góc MAB=góc NAC(góc MAB=góc MAC+góc BAC;góc NAC=góc NAB+góc BAC;gócMAC=góc NAB)

=>ΔAMB=ΔANC

=>BM=CN

d: Xét ΔADE có AH/AD=AK/AE

nên HK//DE

=>HK//BC

25 tháng 1 2017

A B C D H K M N O

tam giác ABC cân tại A suy ra AB=AC và góc ABC = góc ACB

ta có \(\widehat{ABC}+\widehat{ABM}=180^o\\ \widehat{ACB}+\widehat{ACN}=180^o\)mà \(\widehat{ABC}=\widehat{ACB}\)\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)

dễ thấy tam giác \(ABM=\Delta ACN\left(c.g.c\right)\)

suy ra AM = AN ( 2 cạnh tương ứng )

tam giác AMN có AM = AN suy ra tam giác AMN là tam giác cân

b) tam giác ABm = tam giác ACN suy ra góc MAB = góc NAC ( 2 góc tương ứng )

dễ thấy tam giác HBA = tam giác KCA ( cạnh huyền - góc nhọn )

suy ra BA = Ck ( 2 cạnh tương ứng ) 

c) \(\Delta AHK\)có AH=AK suy ra \(\Delta AHk\) là tam giác cân

\(\Delta AHK\)và  \(\Delta AMN\) có chung đỉnh

mà 2 tam giác này là 2 tam giác cân suy ra \(\widehat{AHK}=\widehat{AKH}=\widehat{AMN}=\widehat{ANM}\\ hay\widehat{AHK}=\widehat{AMN}\)

mà 2 góc này ở vị trí đồng vị bằng nhau suy ra HK//MN

d) kéo dài HB và CK cắt nhau tại O

nối AO

xét \(\Delta⊥AHO\)và \(\Delta⊥AKO\)

AO là cạnh huyền chung

AH = AK

do đó \(\Delta AHO=\Delta AKO\) ( cạnh huyền - cạnh góc vuông )

e) xét tam giác \(BAD\)và \(\Delta CAD\)

BA = CA ( tam giác ABC cân tại A )

DA = DC (gt)

AD là canh chung 

do đó \(\Delta BAD=\Delta CAD\left(c.c.c\right)\)

phù phù mệt quá còn mấy cái cuối gửi bn sau mk đi ngủ đã

26 tháng 1 2017

tiếp nhé

suy ra góc BAD = góc CAD ( 2 góc tương ứng )

vì tia AD nằm giữa 2 tia AB và AC nên AD là phân giác góc BAC (1)

ta có BH = CK ( cmt)

và HO = KO (cmt)

suy ra HO-HB=OK-CK ( vì B nằm giữa H và O , C nằm giữa O và K )

hay BO = OC

xét \(\Delta BAO\)và \(\Delta CAO\)có \(\hept{\begin{cases}AOchung\\BO=OC\left(cmt\right)\\BA=CA\left(gt\right)\end{cases}}\)

do đó \(\Delta BAO=\Delta CAO\left(c.c.c\right)\)

suy ra góc BAO = góc CAO ( 2 góc tương ứng )

vì tia AO nằm giữa 2 tia AB và AC suy ra AO là phân giác góc BAC (2)

từ (1) và (2) suy ra A;D;O thẳng hàng 

a: Xét ΔCAB và ΔCNM có

CA=CN

\(\widehat{ACB}=\widehat{NCM}\)(hai góc đối đỉnh)

CB=CM

Do đó: ΔCAB=ΔCNM

=>\(\widehat{CAB}=\widehat{CNM}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//MN

b:

Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

=>HB=HC

Xét ΔHAC vuông tại H và ΔKNC vuông tại K có

AC=NC

\(\widehat{HCA}=\widehat{KCN}\)(hai góc đối đỉnh)

Do đó: ΔHAC=ΔKNC

=>HC=KC

mà HB=HC

nên HB=KC

Xét ΔABH vuông tại H và ΔNCK vuông tại K có

BH=CK

\(\widehat{ABH}=\widehat{NCK}\)\(\left(=\widehat{ACB}\right)\)

Do đó: ΔABH=ΔNCK