Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ M kẻ đường song song với AN cắt BC tại K.Gọi I là giao điểm của MN với BC
Ta có: tam giác ABC cân tại Á nên góc B=góc C. Mà MK//AN => góc MKB =góc ABC => góc MKB=góc B=> MB=MK=CN
=> 180độ - góc MKB=180 độ - góc B=> góc MKI=góc ICN
MÀ góc KMN=góc INA (so le trong).
Vậy tam giác MKI bằng tam giác NIC(g.c.g)=>MI=NI(cạnh tương ứng)
=> I là trung điểm của MN
=>đpcm
A B C I M N H K
Mình xét mỗi trường hợp như hình vẽ mà thôi, còn nếu điểm M nằm ngoài đoạn AB thì cũng tương tự nha
Vẽ MH,NK cùng vuông góc với BC
Ta dễ thấy MB=NC
Xét \(\Delta BMH\) và \(\Delta CNK\)có \(\widehat{BHM}=\widehat{CKN}=90;BM=CN\)\(;\widehat{MBH}=\widehat{NCK}\)(vì cùng bằng với\(\widehat{ACB}\))
\(\Rightarrow\Delta BMH=\Delta CNK\left(CH.GN\right)\Rightarrow MH=NK\)
Xét \(\Delta MHI\)và \(\Delta NKI\)có \(\widehat{HMI}=\widehat{KNI}\)(2 góc so le trong và HM song song với KN);
\(HM=KN;\widehat{MHI}=\widehat{NKI}=90\)
\(\Rightarrow\Delta MHI=\Delta NKI\left(G.C.G\right)\Rightarrow MI=NI\)
Vậy I là trung điểm MN mà I là giao điểm của MN và BC nên ta có điều phải chứng minh
Bài 1:
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình
=>MN//BC
hay BMNC là hình thang
b: Xét ΔABK có MI//BK
nên MI/BK=AM/AB=1/2(1)
XétΔACK có NI//CK
nên NI/CK=AN/AC=1/2(2)
Từ (1)và (2) suy ra MI/BK=NI/CK
mà MI=NI
nên BK=CK
hay K là trug điểm của BC
Xét ΔABC có
K là trung điểm của BC
M là trung điểm của AB
Do đó: KM là đường trung bình
=>KM//AN và KM=AN
hay AMKN là hình bình hành