Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
\(\widehat{MBE}=\widehat{MCF}\)
Do đó:ΔBEM=ΔCFM
b: Ta có: AE+EB=AB
AF+FC=AC
mà EB=FC
và AB=AC
nên AE=AF
mà ME=MF
nên AM là đường trung trực của EF
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC(1)
Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
Do đó: ΔABD=ΔACD
Suy ra: DB=DC
hay D nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra A,M,D thẳng hàng
a, dễ tự làm
b, xét tam giác CAB và tam giác DAB có : AB chung
AC = AD (gt)
góc CAB = góc DAB = 90
=> tam giác CAB = tam giác DAB (2cgv)
=> góc CBA = góc DBA (đn)
xét tam giác AFB và tam giác AEB có : AB chung
góc AFB = góc AEB = 90
=> tam giác AFB = tam giác AEB (ch - gn)
A B C D
Ta có : \(\Delta ABC\) cân tại \(A\) \(\Rightarrow\hept{\begin{cases}AB=AC\\\widehat{ABC}=\widehat{ACB}\end{cases}}\) ( tính chất ) (1)
Lại có : \(\widehat{ABD}=\widehat{ABC}+\widehat{CBD}=90^o\) (2)
\(\widehat{ACD}=\widehat{ACB}+\widehat{BCD}=90^o\) (3)
Từ (1) , (2) và (3) \(\Rightarrow\widehat{CBD=}\widehat{BCD}\)
Xét \(\Delta DBC\) có \(\widehat{CBD=}\widehat{BCD}\) (cmt)
\(\Rightarrow\Delta DBC\) cân tại \(D\) (đpcm)