K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác AHCN có 

M là trung điểm của AC

M là trung điểm của HN

Do đó: AHCN là hình bình hành

mà \(\widehat{AHC}=90^0\)

nên AHCN là hình chữ nhật

Suy ra: AC=HN

b: Xét ΔABC có 

H là trung điểm của BC

O là trung điểm của AB

Do đó;HO là đường trung bình

=>HO//AC và HO=AC/2

=>HO=AM và HO//AM

=>AOHM là hình bình hành

mà AO=AM

nên AOHM là hình thoi

1 tháng 1 2017

Hướng giải: 

a) Hình chữ nhật : dấu hiệu tứ giác có 3 góc vuông là hình chữ nhật

b) C/m IN là đg tb của tam giác ABC => NA = NC 

Tứ giác ADCI là hình thoi: dấu hiệu hai đg chéo vuông góc với nhau và cắt nhau tại trung điểm mỗi đường

c) BC cắt DC tại C chứ. (hai đoạn này chỉ có 1 điểm chung)

*CHÚ Ý: phía trên ko phải là bài giải. Chỉ lả gợi ý giải. 

1 tháng 1 2017

Bài 2: 

a) HE//MN ( _|_ KM) và M^ = 90o => hình thang vuông

b) Tương tự câu b bài 1

c) Thắc mắc về đề bài. Tương tự câu c bài 1 

3 tháng 12 2018

1a/IM vuông góc AB=>AMI=90 do

IN vuông góc AC=>ANI=90 do

△ABC vuông tại A=>BAC=90 do

=>góc AMI= gocANI= gocBAC= 90 do => tứ giác AMIN là hình chữ nhật

1b/Có I dx vs D qua N => ID là đường trung trực của AC=>AI=AD; IC=ID(1)

Trong △ABC có AI là đường trung tuyến ứng với cạnh huyền BC =>AI=1/2BC hay AI=IC(2)

Từ (1) va (2) => AI=IC=CD=DA => Tu giac AICD la hthoi

3 tháng 12 2018

2a/ Có M là TĐ AB và M là điểm đối xứng giữa E và H

=> AM=MB VA EM=MH hay AB giao voi EH tai TD M

=> Tg AEBH la hbh co AHB=90 do => Hbh AEBH la hcn

2b/Co AEBH la hcn=>EH=AB

+) Mà AB=AC=>EH=AC(1)

+) △ABC cân tại A có AH là đường cao đồng thời phân giác của góc BAC => góc BAH=góc HAC.

Co goc BAH=1/2 EAH ; góc AHE=1/2AHB

Ma goc EAH= goc AHB=>BAH=AHE hay goc HAC= goc AHE.

Mà 2 góc này ở vị trí SLT=> EH//AC(2)

Từ (1) va (2)=>tg AEHC la hbh

18 tháng 12 2016

a, Xté tứ giác AMIN có :

BMI=MAN=INA=900

=> Tứ giác AMIN là hình chữ nhật

b, Xét ΔABC

có : BI=IC ( gt)

IN // AM ( gt )

=> AN=NC

mà IN=ND

=> Tứ giác ADCI là hình bình hành (1)

mà INC = 900 (2) Từ (1) và (2) => ADCI là hình thoi

c, Kẻ IQ // BK (QϵCD)

ΔBKC có :

BI = IC (gt)

IQ // BK (cách dựng )

cm tương tự : DK=KQ

=> DK=KQ=QC

=> DK/DC = 1/3

 

 

17 tháng 12 2016

cái đây ý hả

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của AC
Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2

Xét tứ giác BMNC có MN//BC

nên BMNC là hình thang

mà \(\widehat{MBC}=\widehat{NCB}\)

nên BMNC là hình thang cân

b: Xét ΔABC có 

H là trung điểm của BC

N là trung điểm của AC

DO đó: HN là đường trung bình

=>HN//AB và HN=AB/2

=>HN=AM và HN=AM

Xét tứ giác AMHN có 

HN//AM

HN=AM

Do đó: AMHN là hình bình hành

mà AM=AN

nên AMHN là hình thoi

c: Ta có: AMHN là hình thoi

nên Hai đường chéo AH và MN cắt nhau tại trung điểm của mỗi đường

=>O là trung điểm của AH

Xét tứ giác ABHK có

HK//AB

HK=AB

DO đó: ABHK là hình bình hành

Suy ra: Hai đường chéo AH và BK cắt nhau tại trung điểm của mỗi đường

mà O là trung điểm của AH

nên O là trung điểm của BK

a) Xét tứ giác AKCH có : 

AD = DC ( D là trung điểm AC )

HD = DK ( K là điểm đối xứng của H qua D )

=> AKCH là hình bình hành (1)

Xét ∆ vuông AHC có : 

HD là trung truyến 

=> HD = AD = DC 

Mà HD + DK = HK 

AD + DC = AC 

=> HK = AC (2)

Từ (1) và (2) => AKCH là hình chữ nhật 

b) Xét ∆ABC có : 

E là trung điểm AB 

D là trung điểm BC 

=> ED là đường trung bình ∆ABC 

=> ED //BC

Xét ∆ABC có : 

E là trung điểm AC

I là trung điểm BC

=> EI là đường trung bình ∆ABC 

=> EI//AC , EI = \(\frac{1}{2}AC\)

Xét tứ giác EDCI có :

ED// IC ( I \(\in\)BC )

EI//DC ( D \(\in\)AC)

=> EDCI là hình bình hành 

c) Vì ED //HI ( H , I \(\in\)BC )

=> EDIH là hình thang

Vì EI = \(\frac{1}{2}AC\)(cmt)

Mà HD = AD = DC (cmt)

=> HD = \(\frac{1}{2}AC\) 

=> EI = HD 

Mà EDIH là hình thang 

=> EDIH là hình thang cân ( 2 đường chéo bằng nhau )

10 tháng 5 2020

Phần d có ai làm được không ạ?

25 tháng 12 2016

A B C I M N D K a , Tứ giác ANMI có : góc MAN = góc ANI = góc AMI = 90o nên là hình chữ nhật .

→ AI = MN

b, ΔABC vuông tại A có đường trung tuyến AI ứng với cạnh huyền nên :

AI = IC

→ ΔAIC cân tại I

→ Góc IAN = góc ICN

Xét ΔAIN và ΔCIN có :

Góc INA = Góc INC = 90o

AI = IC

Góc IAN = góc ICN

→ Δ AIN = Δ CIN ( cạnh huyền - góc nhọn )

→ AN = NC

Ta có : IN = ND

AN = NC

→ Tứ giác AICD là hình bình hành mà có hai đường chéo ID và AC vuông góc với nhau nên là hinhg thoi .