K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

góc ABC=góc ACB=(180-66)/2=114/2=57 độ

=>góc BAC>góc ABC=góc ACB

=>Trong các cung nhỏ AB,BC,CA thì cung lớn nhất là cung BC

2 tháng 6 2018

Chọn đáp án C.

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

nên theo mối liên hệ giữa cạnh và góc trong tam giác ta có

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

12 tháng 8 2017

Chọn đáp án C.

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

nên theo mối liên hệ giữa cạnh và góc trong tam giác ta có:

Toán lớp 9 | Lý thuyết - Bài tập Toán 9 có đáp án

1: AB=AC

NB=NC

=>AN là trung trực của BC

mà O nằm trên trung trực của BC

nên A,N,O thẳng hàng

=>AN là đường kính của (O)

=>góc ABN=90 độ

2: góc BIN=1/2(sđ cung BN+sđ cung AP)

=1/2(sđ cungCN+sđ cung CP)

=1/2*sđ cung PN

=góc IBN

=>ΔIBN cân tại N

9 tháng 5 2020

Tui mứi học lớp 6 thui.......Xin lỗi...

2 tháng 2 2021

Nguyễn Lê Phước Thịnh

Akai Haruma Giáo viên

giúp em với ak, ai biết giúp với

2 tháng 2 2021

DE đâu ra thế bạn :)) 

23 tháng 3 2018

Gợi ý: Đưa về so sánh góc ở tâm để kết luận

27 tháng 2 2018

a) Do AB // DE nên \(\widebat{AE}=\widebat{BD}\Rightarrow\widebat{AE}+\widebat{DC}=\widebat{BD}+\widebat{DC}=\widebat{BC}\)

Ta có \(\widehat{MIC}\) là góc có đỉnh nằm trong đường tròn nên \(\widehat{MIC}=\frac{\widebat{AE}+\widebat{DC}}{2}=\frac{\widebat{BC}}{2}\)

Góc \(\widehat{MBC}\) là góc tạo bởi tiếp tuyến và dây cung nên \(\widehat{MBC}=\frac{\widebat{BC}}{2}\)

Suy ra \(\widehat{MIC}=\widehat{MBC}\)

Xét tứ giác BMCI có \(\widehat{MIC}=\widehat{MBC}\) nên BMCI là tứ giác nội tiếp.

b) Ta có \(\widehat{MIC}=\widehat{MBC}\Rightarrow\Delta FIC\sim\Delta FBM\left(g-g\right)\)

\(\Rightarrow\frac{FI}{FB}=\frac{FC}{FM}\Rightarrow FI.FM=FB.FC\)

Ta cũng có \(\widehat{DBF}=\widehat{CEF}\Rightarrow\Delta BFD\sim\Delta EFC\left(g-g\right)\)

\(\Rightarrow\frac{FB}{FE}=\frac{FD}{FC}\Rightarrow FE.FD=FB.FC\)

Vậy nên \(FI.FM=FE.FD\)

c) Do PQ là đường kính nên \(\widehat{PTQ}=90^o\)

Suy ra \(\Delta FIQ\sim\Delta FTM\left(c-g-c\right)\Rightarrow\widehat{FTM}=\widehat{FIQ}\)

Lại có BIMC nội tiếp, BOCM cũng nội tiếp nên 5 điểm B, O, I, C, M cùng thuộc đường trong đường kính OM.

Suy ra \(\widehat{FIQ}=90^o\)

Vậy thì P, T, M thẳng hàng.

d) Ta thấy \(S_{IBC}=\frac{1}{2}BC.d\left(I,BC\right)\)

Do BC không đổi nên SIBC lớn nhất khi d(I; BC) lớn nhất.

Điều này xảy ra khi I trùng O hay tam giác ABC vuông tại B.

Vậy diện tích tam giác IBC lớn nhất khi AC là đường kính đường tròn (O).