Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho tam giác ABC vuông cân tại B.Trên cạnh BA và BC lấy hai điểm E và F sao cho BE = BF.Qua B và E kẻ đường vuông góc với AF,chúng cắt AC lần lượt ở I và K. EK cắt BC tại H
a)Chứng minh tam giác AHC cân
b)chứng minh I là trung điểm KC
c)Gọi M,N,P lần lượt là trung điểm EC,AF,EF
a, xét tứ giác BCDE có:
góc BEC = 90 độ
góc BDC = 90 độ
=>góc BEC=BDC
=>tứ giác BCDE nt
xét tứ giác ADHE có:
góc AEH = 90 độ
góc ADH=90 độ
=>AEH+ADH=180
=>tứ giác ADHE nt
b, vì tứ giác EDCB nt(cmt)
=>góc AED=ACB
xet tam giác AED và ACB có:
góc EAD chung
góc AED=ACB
=>2 tam giác này đồng dạng vs nhau
=>AE/AC=AD/AB
=>AD.AC=AE.AB
C, ta có :góc xAB=ACB
mak góc góc ACB=AED(cmt)
=>góc xAB=AED
=>Ax//ED
a)Gọi I là trung điểm của tam giác BC
Áp dụng đường trung tuyến cạnh huyền của tam giác EBC và DBC
=>IE=ID=IB=IC
=> tứ giác BCDE nội tiếp. tâm đường tròn là I
b)AFK=90 ( dg cao thứ 3)
ACK=90 (chắn nữa dg tròn)
=>AFB=ACK
c)BD vg góc với AC
ACK=90 =>CK vg góc với AC
=>CK song song với BH
tuong tu CH song song voi BK
=>BHCK là hinh binh hanh
*vì I là trung điểm của BC
=>I cung la trung diem cua HK
=>H,I,K thang hang
Cho △ABC nhọn (AB<AC) nội tiếp (O), 2 đường cao BD và CE cắt nhau tại H
a/ Chứng minh : B,C,D,E cùng nằm trên một đường tròn .Xác định tâm M của đường tròn này.
b/ Chứng minh : OM // AH
c/ Chứng minh : AB.AE = AC.AD
d/ Gọi K là điểm đối xứng của H qua M .
Nhắc lại kiến thức
2 điểm đối xứng nhau qua 1 đường thẳng thì đường thẳng ấy là đường trung trực của đoạn thẳng nối 2 điểm đó.
+ Cách tư duy: K là điểm đối xứng của H qua BC => BC phải là đường trung trực của đoạn HK tức là BC vuông góc với HK tại trung điểm của đoạn HK. Mà AF là đường cao của tam giác ABC => AF \(\perp\)BC tại F => Nếu K là điểm đối xứng của H qua BC thì K phải thuộc đường thẳng AF và F phải là trung điểm của HK.
Bạn giả sử IK || BC, vì BC vuông góc với AF (gt) => IK vuông góc với AF => K thuộc đường tròn đường kính IA (hay chính là K thuộc đường tròn (O)). Bài toán bây giờ trở thành bạn đi chứng minh K thuộc (O) là enter :)))
+ Cách chứng minh: Kéo dài AF cắt đường tròn (O) tại điểm M, và bây giờ đi chứng minh K trùng M
Giải:
Kéo dài AF cắt (O) tại M
ta có \(\widehat{BAM}=\widehat{BCM}\)(cùng = \(\frac{1}{2}sđ\widebat{BM}\)) (1)
lại có: \(\widehat{BAM}=\widehat{BCE}\)cùng phụ với góc \(\widehat{B}\)(2)
Từ (1) và (2) => BC là đường phân giác của góc \(\widehat{HCM}\)
Xét tam giác HCM có BC vừa là đường cao vừa là đg phân giác => HCM là tam giác cân tại C => BC là đường trung trực của đoạn HM => M là điểm đối xứng của H qua BC => M trùng với K => K thuộc đường tròn (O)
Ta có \(\widehat{AKI}=90^o\)(góc nội tiếp chắn nửa đường tròn) => IK \(\perp\)AK mà BC \(\perp\)AK (do AK là đường cao) => IK//BC (2 đg thẳng cùng vuông góc với 1 đường thẳng thì chúng song song với nhau) => ĐPCM