Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)
b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)
=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)
c)Đặt x-y=a;y-z=b;z-x=c
a+b+c=x-y-z+z-x=o
đưa về như bài b
d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung
e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)
=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)
Vì c < d,a/b <1 nên c < d, a < b
Ta có a/b = ab + ac/b2 + bc, a + d/b + c = ab + bd/b2 + bc
Vì c < d, a < b nên ac < bd => ab + ac < ab + bd
Vì ab + ac < ab + bd nên ab + ac/b2 + bc < ab + bd/b2 + bc
Vậy a/b < a + d/b + c
Vì c/d < a/b nên c/d < a + d/b + c
Vậy c/d < a/b < a + d/b + c
\(a,\frac{a}{b}< \frac{c}{d}=>\frac{ad}{bd}< \frac{bc}{bd}=>ad< bc\left(đpcm\right)\)
\(b,ad< bc=>\frac{ad}{bd}< \frac{bc}{bd}=>\frac{a}{b}< \frac{c}{d}\left(đpcm\right)\)
Giả sử : \(\frac{a}{b}=\frac{c}{d}\) thì ad = bc
Suy ra : ad < bc thì \(\frac{a}{b}< \frac{c}{d}\) (đpcm)
a)
Có \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow ad< bc\) (vì bd > 0)
Vậy \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) (với b, d > 0)
b)
Có ad < bc và bd > 0
\(\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Rightarrow\frac{a}{b}< \frac{c}{d}\)
Vậy \(ad< bc\Rightarrow\frac{a}{b}< \frac{c}{d}\) (với b, d > 0)
Ta có : \(\frac{a}{b}=\frac{ad}{bd},\frac{c}{d}=\frac{bc}{bd}\)
a, Mẫu chung bd > 0 do b > 0 , d > 0 nên nếu \(\frac{ad}{bd}< \frac{bc}{bd}\)thì ad < bc
b, Ngược lại, nếu ad < bc thì \(\frac{ad}{bd}< \frac{bc}{bd}\). Suy ra \(\frac{a}{b}< \frac{c}{d}\)
Ta có thể viết : \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\)
\(\frac{a}{b}=\frac{ad}{bd}\)
\(\frac{c}{d}=\frac{cb}{bd}\)
Vì \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bc}< \frac{bc}{bd}\)
\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{b}< c\Rightarrow ad< bc\)
\(ad< bc\Rightarrow\frac{ad}{b}< c\Rightarrow\frac{a}{b}< \frac{c}{d}\)
a) Vì b>0,d>0 nên khi nhân 2 vế của 1 BĐT cho b hoặc d thì dấu của BĐT không đổi
Có\(\frac{a}{b}< \frac{c}{d}\)nhân 2 vế BĐT cho b.d>0\(\Rightarrow\frac{a.b.d}{b}< \frac{c.b.d}{d}\Leftrightarrow ad< bc\)
b) Tương tự câu a ta chia 2 vế BĐT cho b.d
\(ad< bc\Rightarrow\frac{ad}{bd}< \frac{bc}{bd}\Leftrightarrow\frac{a}{b}< \frac{c}{d}\)