\(\frac{a}{b}=\frac{c}{d}\left(b,d\ne0;b\ne d,-d\right)\)

Chứng minh 

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2018

với c=0=>a=0 đẳng thức đúng

với c khác 0 ta có: \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\Rightarrow\frac{\left(a-b\right)^{2018}}{\left(c-d\right)^{2018}}=\frac{a^{2018}}{c^{2018}}=\frac{b^{2018}}{d^{2018}}=\frac{a^{2018}+b^{2018}}{c^{2018}+d^{2018}}\)

=>\(\frac{\left(a-b\right)^{2018}}{\left(c-d\right)^{2018}}=\frac{a^{2018}+b^{2018}}{c^{2018}+d^{2018}}\)

13 tháng 12 2019

Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có

\(VT:\frac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\frac{b^{2018}\cdot k^{2018}+d^{2018}\cdot k^{2018}}{b^{2018}+d^{2018}}=\frac{k^{2018}\left(b^{2018}+d^{2018}\right)}{b^{2018}+d^{2018}}=k^{2018}\)

\(VP:\frac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}=\frac{\left(bk+dk\right)^{2018}}{\left(b+d\right)^{2018}}=\frac{k^{2018}\cdot\left(b+d\right)^{2018}}{\left(b+d\right)^{2018}}=k^{2018}\)

\(\Rightarrow VT=VP\)

Hay \(\frac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\frac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}\left(đpcm\right)\)

13 tháng 12 2019

Ủa cho tớ hỏi: VT , VP là j vậy?

4 tháng 11 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (1)

a) Từ (1) ta có:

\(\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\) (2)

\(\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\) (3)

Từ (2) và (3) suy ra \(\dfrac{a}{a+b}=\dfrac{c}{c+d}\)

b) Từ (1) ta có:

\(\dfrac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\dfrac{b^{2018}.k^{2018}+d^{2018}.k^{2018}}{b^{2018}+d^{2018}}=\dfrac{k^{2018}\left(b^{2018}+d^{2018}\right)}{b^{2018}+d^{2018}}=k^{2018}\) (4)

\(\dfrac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}=\dfrac{\left(bk+dk\right)^{2018}}{\left(b+d\right)^{2018}}=\dfrac{\left[k\left(b+d\right)\right]^{2018}}{\left(b+d\right)^{2018}}=k^{2018}\) (5)

Từ (4) và (5) suy ra \(\dfrac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\dfrac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}\)

13 tháng 8 2017

a. Từ tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{a}{c}=\frac{b}{d}=\frac{a-b}{c-d}\)

Ta có: \(\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a}{c}\times\frac{b}{d}=\left(\frac{a-c}{b-d}\right)\left(\frac{a-c}{b-d}\right)=\left(\frac{a-c}{b-d}\right)^2\)

\(\Rightarrow\frac{ab}{cd}=\left(\frac{a-b}{c-d}\right)^2\)(ĐPCM)

13 tháng 8 2017

a)\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\) Đặt \(\frac{a}{c}=\frac{b}{d}=k\)

Áp dụng TCDSBN ta có :

\(k=\frac{a-b}{c-d}\)\(\Rightarrow k^2=\left(\frac{a-b}{c-d}\right)^2\)(1)

Ta lại có : \(k=\frac{a}{c};k=\frac{b}{d}\Rightarrow k^2=\frac{a}{c}.\frac{b}{d}=\frac{ab}{cd}\)(2)

Từ (1) ; (2) \(\Rightarrow\left(\frac{a-b}{c-d}\right)^2=\frac{ab}{cd}\)(đpcm)

b ) Đề sai : điều cần cm là \(\frac{2017a-2018b}{2017c+2018d}=\frac{2017c-2018d}{2017a+2018b}\)

\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}=\frac{2007a}{2007c}=\frac{2008b}{2008c}=\frac{2007a+2008b}{2007c+2008d}=\frac{2007a-2008b}{2007c-2008d}\)

\(\Rightarrow\left(2007a+2008b\right)\left(2007c-200d\right)=\left(2007a-2008b\right)\left(2007c+2008d\right)\)

\(\Rightarrow\frac{2017a-2018b}{2017c+2018d}=\frac{2017c-2018d}{2017a+2018b}\)(đpcm)

7 tháng 3 2020

Đề có sai ko bạn sao lại c-d ?

7 tháng 3 2020

Sửa đề : Cần chứng minh \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\)

Đặt :\(\frac{a}{2017}=\frac{b}{2018}=\frac{c}{2019}=k\)

\(\Rightarrow\hept{\begin{cases}a=2017k\\b=2018k\\c=2019k\end{cases}}\)

Khi đó :

\(4\left(a-b\right)\left(b-c\right)=4\left(2017k-2018k\right)\left(208k-2019k\right)\)

\(=4\cdot\left(-k\right)\cdot\left(-k\right)=4k^2\)

\(\left(c-a\right)^2=\left(2019k-2017k\right)^2=\left(2k\right)^2=4k^2\)

Do đó : \(4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\) (đpcm)

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Lời giải:

Đặt \(\frac{a}{2016}=\frac{b}{2018}=\frac{c}{2020}=t\Rightarrow a=2016t; b=2018t; c=2020t\)

Khi đó:

\(\frac{(a-c)^2}{4}=\frac{(2016t-2020t)^2}{4}=\frac{16t^2}{4}=4t^2(1)\)

\((a-b)(b-c)=(2016t-2018t)(2018t-2020t)=(-2t)(-2t)=4t^2(2)\)

Từ \((1);(2)\Rightarrow \frac{(a-c)^2}{4}=(a-b)(b-c)\) (đpcm)

AH
Akai Haruma
Giáo viên
31 tháng 10 2019

Đặng Quốc Huy:

\(\frac{(2016t-2020t)^2}{4}=\frac{(-4t)^2}{4}=\frac{(-4)^2.t^2}{4}=\frac{16t^2}{4}=4t^2\)