\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_9}{a_1}\)và (a1
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2015

Theo t/c dãy tỉ số = nhau:

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=\frac{a_3}{a_4}=...=\frac{a_8}{a_9}=\frac{a_9}{a_1}=\frac{a_1+a_2+a_3+...+a_8+a_9}{a_2+a_3+a_4+...+a_9+a_1}=1\)

=> a1=a2; a2=a3;...;a8=a9; a9=a1

=> a1=a2=a3=...=a9

=> đpcm.

20 tháng 5 2017

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=...=\dfrac{a_8}{a_9}=\dfrac{a_9}{a_1}=\dfrac{a_1+a_2+...+a_8+a_9}{a_2+a_3+...+a_9+a_1}=1\)

\(\Rightarrow\dfrac{a_1}{a_2}=1\Rightarrow a_1=a_2\)

...

\(\dfrac{a_9}{a_1}=1\Rightarrow a_9=a_1\)

\(\Rightarrow a_1=a_2=...=a_9\left(đpcm\right)\)

Vậy...

20 tháng 5 2017

ko bài này mình học rồi làm lại cho nhớ

15 tháng 1 2016

Theo t/c dãy TSBN:

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_9}{a_1}=\frac{a_1+a_2+...+a_9}{a_2+a_3+...+a_1}=1\)

=> a1=a2; a2=a3; ...; a9 = a1

=> a1=a2=a3=a4=...=a9

=> a2=a3=a4=...=a9=5

15 tháng 1 2016

bằng 5

tick tui nha

4 tháng 1 2017

Ta có : \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}....\frac{a_{2017}}{a_{2018}}=\frac{a_1}{a_{2018}}=-5^{2017}\)

Mặt khác : \(\frac{a_1}{a_2}.\frac{a_2}{a_3}.\frac{a_3}{a_4}.....\frac{a_{2017}}{a_{2018}}=\left(\frac{a_1}{a_2}\right)^{2017}\)

\(\Rightarrow\frac{a_1}{a_2}=-5\) (1)

Áp dụng tính chất dãy tỉ số bằng nhau ,ta có :

\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=....=\frac{a_{2017}}{a_{2018}}=\frac{a_1+a_2+a_3+....+a_{2017}}{a_2+a_3+a_4+.....+a_{2018}}\) (2)

Từ (1) và (2)

=> S = -5

8 tháng 1 2017

sao tự hỏi rồi tự trả lời vậy bạn :)

18 tháng 12 2015

\(\frac{a1}{a2}=\frac{a2}{a3}=.........=\frac{a8}{a9}=\frac{a9}{a1}=\frac{a1+a2+...+a8+a9}{a2+a3+.......+a9+a1}=1\)

=> a1 =a2

=>a2=a3

...............

=> a9 =a1

Vậy a1=a2=......=a9  

( viết a1 =a1) nhanh

22 tháng 11 2019

Bài 1:

Ta có: \(\frac{a}{b}=\frac{b}{d}.\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{b^2}{d^2}.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{a^2}{b^2}=\frac{b^2}{d^2}=\frac{a^2+b^2}{b^2+d^2}\)

\(\Rightarrow\frac{a^2}{b^2}=\frac{a^2+b^2}{b^2+d^2}\) (1).

Lại có:

\(\frac{a^2}{b^2}=\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{d}=\frac{a}{d}\) (2).

Từ (1) và (2) \(\Rightarrow\frac{a^2+b^2}{b^2+d^2}=\frac{a}{d}\left(đpcm\right).\)

Chúc bạn học tốt!

23 tháng 3 2017

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=\dfrac{a_3}{a_4}=...=\dfrac{a_8}{a_9}=\dfrac{a_9}{a_1}=\dfrac{a_1+a_2+a_3+...+a_8+a_9}{a_1+a_2+a_3+...+a_9}=1\)

+) \(\dfrac{a_1}{a_2}=1\Rightarrow a_1=a_2\)

+) \(\dfrac{a_2}{a_3}=1\Rightarrow a_2=a_3\)

...

+) \(\dfrac{a_9}{a_1}=1\Rightarrow a_1=a_9\)

\(\Rightarrow a_1=a_2=a_3=...=a_9\left(đpcm\right)\)

Vậy...

10 tháng 10 2021

Ta có \(a_1< a_2< ...< a_9\)

              \(\Rightarrow a_1+...+a_9< 3a_3+3a_6+3a_9\)

Khi đó: \(\frac{a_1+...+a_9}{a_3+a_6+a_9}< \frac{3\left(a_3+a_6+a_9\right)}{a_3+a_6+a_9}< 3\)(1)

Chứng minh tương tư ta có \(\Rightarrow a_1+...+a_9>3a_1+3a_4+3a_7\)

Khi đó \(\frac{a_1+...+a_9}{a_1+a_4+a_7}>\frac{3\left(a_1+a_4+a_7\right)}{a_1+a_4+a_7}>3\)(2)

Từ (1) và (2) => Điều phải chứng minh.

Chúc bạn học tốt!