Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
f(x) + g(x) - h(x) = (x5 - 4x3 + x2 - 2x + 1) + (x5 - 2x4 + x2 - 5x + 3) - (x4 - 3x2 + 2x - 5)
= x5 - 4x3 + x2 - 2x + 1 + x5 - 2x4 + x2 - 5x + 3 - x4 + 3x2 - 2x + 5
= (x5 + x5) - (2x4 + x4) - 4x3 + ( x2 + x2 + 3x2) - (2x + 5x + 2x) + (1 + 3 + 5)
= 2x5 - 3x4 - 4x3 + 5x2 - 9x + 9
f(x)=
f(x) + g(x) - h(x) = (x5 - 4x3 + x2 - 2x + 1) + (x5 - 2x4 + x2 - 5x + 3) - (x4 - 3x2 + 2x - 5)
= x5 - 4x3 + x2 - 2x + 1 + x5 - 2x4 + x2 - 5x + 3 - x4 + 3x2 - 2x + 5
= (x5 + x5) - (2x4 + x4) - 4x3 + ( x2 + x2 + 3x2) - (2x + 5x + 2x) + (1 + 3 + 5)
= 2x5 - 3x4 - 4x3 + 5x2 - 9x + 9
\(f\left(x\right)+h\left(x\right)-g\left(x\right)\)
\(=\left(5x^4+3x^2+x-1\right)+\left(-x^4+3x^3-2x^2-x+2\right)\)
\(-\left(2x^4-x^3+x^2+2x+1\right)\)
\(=\left(5x^4-x^4-2x^4\right)+\left(3x^3+x^3\right)+\left(3x^2-2x^2-x^2\right)\)
\(+\left(x-x-2x\right)+\left(-1+2-1\right)\)
\(=2x^4+4x^3-2x\)
a) \(f\left(x\right)-g\left(x\right)+h\left(x\right)\)
\(=x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)
\(=x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)
\(=2x+1\)
b) \(f\left(x\right)-g\left(x\right)+h\left(x\right)=0\)
\(\Leftrightarrow\)\(2x+1=0\)
\(\Leftrightarrow\)\(x=-\frac{1}{2}\)
Ta có: \(F\left(x\right)+G\left(x\right)-H\left(x\right)=0\)
\(\Leftrightarrow4x^2+3x-2+3x^2-2x+5-5x^2+2x-3=0\\ \Leftrightarrow2x^2+3x=0\\ \Rightarrow x\left(2x+3\right)=0\\ \Rightarrow x=0;x=\dfrac{-3}{2}\)
Vậy tìm được x thỏa mãn là: \(x=0;x=\dfrac{-3}{2}\)
Bài này chill ha ? nhưng ko ai lm cx lạ :vvv
a, Ta có : \(f\left(1\right)=5.1-1^3+3.1^2-1=5-1+3-1=6\)
\(g\left(-1\right)=-\left(-1\right)^3+3\left(-1\right)^2+2\left(-1\right)-3=1+3-2-3=-1\)
\(f\left(1\right)-g\left(-1\right)=6-\left(-1\right)=7\)
b, Ta có :
\(h\left(x\right)=f\left(x\right)-g\left(x\right)=\left(5x-x^3+3x^2-1\right)-\left(-x^3+3x^2+2x-3\right)\)
\(=5x-x^3+3x^2-1+x^3-3x^2-2x+3=3x+2\)
c, \(\left|h\left(x\right)-5\right|+2x=2,5\Leftrightarrow\left|3x+2-5\right|+2x=2,5\)
\(\Leftrightarrow\left|3x-3\right|+2x=2,5\Leftrightarrow\left|3x-3\right|=2,5-2x\)
Chia 2 TH nhá vì lười :3 (nhưng ko dám chắc nha men)
Bài 3 :
1. Thay x = -5 vào f(x) ta được :
\(\left(-5\right)^2-4\left(-5\right)+5=50\)
Vậy x = -5 không là nghiệm của đa thức trên .
Bài 2 :
1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)
=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)
=> \(f_{\left(x\right)}=x^2+4\)
=> \(x^2+4=0\)
Vậy đa thức trên vô nghiệm .
2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)
=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)
=> \(g_{\left(x\right)}=0\)
Vậy đa thức trên vô số nghiệm .
3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)
=> \(h_{\left(x\right)}=x^2-x+1\)
=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)
Vậy đa thức vô nghiệm .
Bài 3:
\(f\left(x\right)=x^2+4x-5.\)
+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:
\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)
\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)
\(\Rightarrow f\left(x\right)=25-20-5\)
\(\Rightarrow f\left(x\right)=5-5\)
\(\Rightarrow f\left(x\right)=0.\)
Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)
Chúc bạn học tốt!
Mấy câu này dễ mà,động não lên chứ bạn:v
Link______________Link
h) \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\)
\(\ge\left|x-1+3-x\right|=2\)
\(\Rightarrow x+1>2\Leftrightarrow x>1\)
Vậy: \(\left\{{}\begin{matrix}x>1\\x\in R\end{matrix}\right.\)
Câu b xét khoảng tương tự với cái link t đưa thôi
hơi bức xúc rồi đó
tau chỉ muốn kiểm tra lại thôi