\(f\left(x\right)=x^2-3x-1\)

         \(g\left(x\right)=3x...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 5 2017

f(x) + g(x) - h(x) = (x5 - 4x3 + x2 - 2x + 1) + (x5 - 2x4 + x2 - 5x + 3) - (x4 - 3x2 + 2x - 5)

= x5 - 4x3 + x2 - 2x + 1 + x5 - 2x4 + x2 - 5x + 3 - x4 + 3x2 - 2x + 5

= (x5 + x5) - (2x4 + x4) - 4x3 + ( x2 + x2 + 3x2) - (2x + 5x + 2x) + (1 + 3 + 5)

= 2x5 - 3x4 - 4x3 + 5x2 - 9x + 9

f(x)=

23 tháng 8 2018

f(x) + g(x) - h(x) = (x5 - 4x3 + x2 - 2x + 1) + (x5 - 2x4 + x2 - 5x + 3) - (x4 - 3x2 + 2x - 5)

= x5 - 4x3 + x2 - 2x + 1 + x5 - 2x4 + x2 - 5x + 3 - x4 + 3x2 - 2x + 5

= (x5 + x5) - (2x4 + x4) - 4x3 + ( x2 + x2 + 3x2) - (2x + 5x + 2x) + (1 + 3 + 5)

= 2x5 - 3x4 - 4x3 + 5x2 - 9x + 9

27 tháng 12 2019

\(f\left(x\right)+h\left(x\right)-g\left(x\right)\)

\(=\left(5x^4+3x^2+x-1\right)+\left(-x^4+3x^3-2x^2-x+2\right)\)

\(-\left(2x^4-x^3+x^2+2x+1\right)\)

\(=\left(5x^4-x^4-2x^4\right)+\left(3x^3+x^3\right)+\left(3x^2-2x^2-x^2\right)\)

\(+\left(x-x-2x\right)+\left(-1+2-1\right)\)

\(=2x^4+4x^3-2x\)

6 tháng 4 2018

a)   \(f\left(x\right)-g\left(x\right)+h\left(x\right)\)

\(=x^3-2x^2+3x+1-\left(x^3+x-1\right)+\left(2x^2-1\right)\)

\(=x^3-2x^2+3x+1-x^3-x+1+2x^2-1\)

\(=2x+1\)

b)      \(f\left(x\right)-g\left(x\right)+h\left(x\right)=0\)

\(\Leftrightarrow\)\(2x+1=0\)

\(\Leftrightarrow\)\(x=-\frac{1}{2}\)

28 tháng 3 2018

Ta có: \(F\left(x\right)+G\left(x\right)-H\left(x\right)=0\)

\(\Leftrightarrow4x^2+3x-2+3x^2-2x+5-5x^2+2x-3=0\\ \Leftrightarrow2x^2+3x=0\\ \Rightarrow x\left(2x+3\right)=0\\ \Rightarrow x=0;x=\dfrac{-3}{2}\)

Vậy tìm được x thỏa mãn là: \(x=0;x=\dfrac{-3}{2}\)

Bài này chill ha ? nhưng ko ai lm cx lạ :vvv

a, Ta có : \(f\left(1\right)=5.1-1^3+3.1^2-1=5-1+3-1=6\)

\(g\left(-1\right)=-\left(-1\right)^3+3\left(-1\right)^2+2\left(-1\right)-3=1+3-2-3=-1\)

\(f\left(1\right)-g\left(-1\right)=6-\left(-1\right)=7\)

b, Ta có : 

\(h\left(x\right)=f\left(x\right)-g\left(x\right)=\left(5x-x^3+3x^2-1\right)-\left(-x^3+3x^2+2x-3\right)\)

\(=5x-x^3+3x^2-1+x^3-3x^2-2x+3=3x+2\)

c, \(\left|h\left(x\right)-5\right|+2x=2,5\Leftrightarrow\left|3x+2-5\right|+2x=2,5\)

\(\Leftrightarrow\left|3x-3\right|+2x=2,5\Leftrightarrow\left|3x-3\right|=2,5-2x\)

Chia 2 TH nhá vì lười :3 (nhưng ko dám chắc nha men) 

31 tháng 5 2020

cậu làm đúng r mk đăng chs chs thôi .

29 tháng 3 2020

Bài 3 :

1. Thay x = -5 vào f(x) ta được :

\(\left(-5\right)^2-4\left(-5\right)+5=50\)

Vậy x = -5 không là nghiệm của đa thức trên .

Bài 2 :

1. Ta có : \(f_{\left(x\right)}=x\left(1-x\right)+\left(2x^2-x+4\right)\)

=> \(f_{\left(x\right)}=x-x^2+2x^2-x+4\)

=> \(f_{\left(x\right)}=x^2+4\)

=> \(x^2+4=0\)

Vậy đa thức trên vô nghiệm .

2. Ta có \(g_{\left(x\right)}=x\left(x-5\right)-x\left(x+2\right)+7x\)

=> \(g_{\left(x\right)}=x^2-5x-x^2-2x+7x\)

=> \(g_{\left(x\right)}=0\)

Vậy đa thức trên vô số nghiệm .

3. Ta có : \(h_{\left(x\right)}=x\left(x-1\right)+1\)

=> \(h_{\left(x\right)}=x^2-x+1\)

=> \(h_{\left(x\right)}=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)

=> \(\left(x-\frac{1}{2}\right)^2=-\frac{3}{4}\)

Vậy đa thức vô nghiệm .

29 tháng 3 2020

Bài 3:

\(f\left(x\right)=x^2+4x-5.\)

+ Thay \(x=-5\) vào đa thức \(f\left(x\right)\) ta được:

\(f\left(x\right)=\left(-5\right)^2+4.\left(-5\right)-5\)

\(\Rightarrow f\left(x\right)=25+\left(-20\right)-5\)

\(\Rightarrow f\left(x\right)=25-20-5\)

\(\Rightarrow f\left(x\right)=5-5\)

\(\Rightarrow f\left(x\right)=0.\)

Vậy \(x=-5\) là nghiệm của đa thức \(f\left(x\right).\)

Chúc bạn học tốt!

15 tháng 3 2018

Mấy câu này dễ mà,động não lên chứ bạn:v

Link______________Link

h) \(\left|x-1\right|+\left|x-3\right|=\left|x-1\right|+\left|3-x\right|\)

\(\ge\left|x-1+3-x\right|=2\)

\(\Rightarrow x+1>2\Leftrightarrow x>1\)

Vậy: \(\left\{{}\begin{matrix}x>1\\x\in R\end{matrix}\right.\)

Câu b xét khoảng tương tự với cái link t đưa thôi

hơi bức xúc rồi đó

tau chỉ muốn kiểm tra lại thôi