\(f\left(x\right)=ax^2+bx+c\) thỏa mãn \(|f\left(x\right)|\le1,\...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 11 2017

sky oi say oh yeah

AH
Akai Haruma
Giáo viên
31 tháng 1 2020

Lời giải:

\(f(x)=(-x+1)(x-2)>0\Leftrightarrow \left\{\begin{matrix} -x+1< 0\\ x-2< 0\end{matrix}\right.\) hay $1< x< 2$

hay $x\in (1;2)$

Đáp án D

NV
2 tháng 4 2020

\(a=1>0\) ; \(\Delta'=\left(m-2\right)^2-\left(m-2\right)=\left(m-2\right)\left(m-3\right)\)

a/ Để \(f\left(x\right)\le0\) \(\forall x\in\left(0;1\right)\)

\(\Leftrightarrow x_1\le0< 1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\le0\\f\left(1\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m-2\le0\\1-\left(m-2\right)\le0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn

Do đó các câu c, f cũng không tồn tại m thỏa mãn

b/ TH1: \(\Delta< 0\Rightarrow2< m< 3\)

TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\frac{b}{2a}\notin\left(0;1\right)\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=2\\m=3\end{matrix}\right.\)

TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le1\end{matrix}\right.\end{matrix}\right.\)

\(\Delta>0\Rightarrow\left[{}\begin{matrix}m>3\\m< 2\end{matrix}\right.\)

\(0\le x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}f\left(0\right)\ge0\\\frac{x_1+x_2}{2}>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m-2\ge0\\m-2>0\end{matrix}\right.\) \(\Rightarrow m>2\) \(\Rightarrow m>3\)

\(x_1< x_2\le1\Leftrightarrow\left\{{}\begin{matrix}f\left(1\right)\ge0\\\frac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}3-m\ge0\\m-2< 1\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m

Kết hợp 3 TH \(\Rightarrow m\ge2\)

NV
2 tháng 4 2020

d/ Tương tự như câu b, nhưng

TH2: \(\left\{{}\begin{matrix}\Delta=0\\-\frac{b}{2a}\in\left[0;1\right]\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

TH3: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0< x_1< x_2\\x_1< x_2< 1\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow m>3\)

Kết hợp 3 TH \(\Rightarrow\left[{}\begin{matrix}2< m< 3\\m>3\end{matrix}\right.\)

e/

TH1: \(\Delta\le0\Rightarrow2\le m\le3\)

TH2: \(\left\{{}\begin{matrix}\Delta>0\\\left[{}\begin{matrix}0\le x_1< x_2\\x_1< x_2\le1\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>3\)

\(\Rightarrow m\ge2\)

10 tháng 10 2020

Ta có: \(x^2-2\left(3m-1\right)x+m+3\ge0\)

\(\Leftrightarrow f\left(m\right)=\left(-6x+1\right)m+x^2+2x+3\ge0\)

Ta thấy \(f\left(m\right)\) là hàm số bậc nhất mà \(x\in[1;+\infty)\Rightarrow-6x+1< 0\)

\(\Rightarrow\) Hàm \(f\left(m\right)\) nghịch biến

Từ giả thiết \(m\le1\Rightarrow f\left(m\right)\ge f\left(1\right)\)

\(\Leftrightarrow x^2-2\left(3m-1\right)x+m+3\ge\left(x-2\right)^2\ge0\left(đpcm\right)\)

21 tháng 11 2019

Nguyễn Việt Lâm

21 tháng 11 2019

bổ sung đề

với f không giảm

tính f\(\left(\frac{1}{n}\right)\) với n∈\(\left\{1;2;3;....;20\right\}\)