K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Xét ΔANC vuông tại N có

\(\widehat{NAC}+\widehat{ACN}=90^0\)(hai góc nhọn phụ nhau)

hay \(\widehat{ACN}=90^0-\widehat{NAC}=90^0-60^0=30^0\)

Xét ΔANC vuông tại N có \(\widehat{ACN}=30^0\)(cmt)

nên \(AN=\frac{AC}{2}\)(Trong một tam giác vuông, cạnh đối với góc 300 thì bằng nửa cạnh huyền)

hay \(AN=\frac{8}{2}=4cm\)

Áp dụng định lí Pytago vào ΔANC vuông tại N, ta được:

\(AC^2=AN^2+NC^2\)

\(\Leftrightarrow NC^2=AC^2-AN^2=8^2-4^2=64-16=48\)

hay \(NC=4\sqrt{3}cm\)

Vậy: AN=4cm; \(NC=4\sqrt{3}cm\)

Xét ΔABM vuông tại M và ΔACN vuông tại N có

\(\widehat{BAM}\) chung

Do đó: ΔABM∼ΔACN(g-g)

\(\Rightarrow\widehat{ABM}=\widehat{ACN}\)(hai góc tương ứng bằng nhau)

\(\widehat{ACN}=30^0\)(cmt)

nên \(\widehat{ABM}=30^0\)

Vậy: \(\widehat{ABM}=30^0\)

b) Xét ΔABC có:

BM là đường cao ứng với cạnh AC(gt)

CN là đường cao ứng với cạnh AB(gt)

BM\(\cap\)CN={H}

Do đó: H là trực tâm của ΔABC(Tính chất ba đường cao của tam giác)

⇔AH⊥BC

hay AK⊥BC

Xét ΔCBM vuông tại M và ΔCAK vuông tại K có

\(\widehat{BCM}\) chung

Do đó: ΔCBM∼ΔCAK(g-g)

\(\Rightarrow\widehat{CBM}=\widehat{CAK}\)(hai góc tương ứng)(ddpcm)

c) Ta có: \(AN=\frac{AC}{2}\)(cmt)

nên \(\frac{AN}{AC}=\frac{1}{2}\)

hay \(\frac{AC}{AN}=2\)

Ta có: ΔABM∼ΔACN(cmt)

\(\frac{AB}{AC}=\frac{AM}{AN}\)

hay \(\frac{AB}{AM}=\frac{AC}{AN}\)

Xét ΔABC và ΔAMN có

\(\frac{AB}{AM}=\frac{AC}{AN}\)(cmt)

\(\widehat{BAC}\) chung

Do đó: ΔABC∼ΔAMN(c-g-c)

\(\frac{BC}{MN}=\frac{AC}{AN}\)(hai cặp cạnh tương ứng tỉ lệ)

\(\frac{AC}{AN}=2\)(cmt)

nên \(\frac{BC}{MN}=2\)

hay \(MN=\frac{BC}{2}\)(1)

Xét ΔNBC vuông tại N có NI là đường trung tuyến ứng với cạnh huyền BC(I là trung điểm của BC)

nên \(NI=\frac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(2)

Xét ΔMBC vuông tại M có MI là đường trung tuyến ứng với cạnh huyền BC(I là trung điểm của BC)

nên \(MI=\frac{BC}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)(3)

Từ (1), (2) và (3) suy ra IN=IM=NM

Xét ΔINM có IN=IM=NM(cmt)

nên ΔINM đều(định nghĩa tam giác đều)(đpcm)

6 tháng 12 2019

e mới hok lớp dưới 9 thôi

20 tháng 11 2022

a: Xét (O) có

ΔABC nội tiếp

BC là đường kính

Do đó: ΔABC vuông tại A

Xét ΔABC vuông tại A có sin ACB=AB/BC=1/2

nen góc ACB=30 độ

=>góc ABC=60 độ

b: Ta có: ΔOAD cân tại O

mà OH là đường cao

nên OH là trung trực của AD và OH là phân giác của góc AOD

=>BC là trung trực của AD 

Xét ΔCAD có

CH vừa là đường cao, vừa là trungtuyến

nên ΔCAD cân tại C

=>góc ACD=2*góc ACB=60 độ

=>ΔCAD đều

c: Xét ΔEAO và ΔEDO có

OA=OD

góc AOE=góc DOE

OE chung

Do đó; ΔEAO=ΔEDO

=>góc EAO=90 độ

=>EA là tiếp tuyến của (O)

6 tháng 2 2019

A B C O E F S T I Q K D N J L P M G R

a) +) Dễ thấy: ^BAD = ^CAO (Cùng phụ ^ABC). Mà ^BAI = ^CAI nên ^OAI = ^DAI 

Suy ra: ^OAI = ^DAO/2 = ^BAI - ^BAD = ^BAC/2 - 900 + ^ABC = ^BAC/2 - (^BAC+^ABC+^ACB)/2 + ^ABC

= (^ABC + ^ACB)/2 = \(\frac{\alpha-\beta}{2}=\frac{\alpha^2-\beta^2}{2\left(\alpha+\beta\right)}=\frac{\alpha^2-\beta^2}{sđ\widebat{BAC}}\) (đpcm).

+) Kẻ đường kính AG của đường tròn (O). Dễ thấy: Tứ giác BICJ nội tiếp, gọi (BICJ) cắt AC tại R khác C.

Do AK=2R nên AK = AG. Ta có: ^ARB = ^ARI + ^BRI = ^IBC + ^ICB = (^ABC+^ACB)/2 = ^ABI + ^IBC = ^ABR

=> \(\Delta\)BAR cân tại A => AB = AR. Kết hợp với AK=AG, ^BAG = ^RAK (cmt) => \(\Delta\)ABG = \(\Delta\)ARK (c.g.c)

=> ^ABG = ^ARK = 900 => ^KRC = ^KDC = 900 => Tứ giác DKCR nội tiếp 

=> AD.AK = AR.AC = AI.AJ => Tứ giác DIJK nội tiếp (đpcm).

b) \(\Delta\)KAG cân tại A có phân giác AI => AI vuông góc KG hay AM vuông góc KG. Mà AM vuông góc GM

Nên K,G,M thẳng hàng => K,M,G,N thẳng hàng => AM vuông góc KN tại M

Ta thấy: M là trung điểm IJ, KM vuông góc IJ tại M nên \(\Delta\)KIJ cân tại K

Xét đường tròn (KIJ): KI = KJ, KN vuông góc IJ => KN là đường kính của (KIJ)

Mà D thuộc đường tròn (KIJ) (cmt) => ^KDN = 900 => ND vuông góc AK tại D => N,L,D thẳng hàng

Xét \(\Delta\)AKN có: AM vuông góc KN, ND vuông góc AK, AM và ND cùng đi qua L

=> L là trực tâm \(\Delta\)AKN => KL vuông góc AN (đpcm).

c) Gọi P là trực tâm của \(\Delta\)AJQ

Do \(\Delta\)KIJ cân tại K => ^KIJ = ^KJI. Có tứ giác DIJK nội tiếp => ^KIJ = ^KDJ => ^KDJ = ^KJI

Từ đó: \(\Delta\)DKJ ~ \(\Delta\)JKA (g.g) => KJ2 = KD.KA => KQ2 = KD.KA => \(\Delta\)KQD ~ \(\Delta\)KAQ (c.g.c)

Suy ra: ^QDJ = ^KDQ + ^KDJ = ^AQK + ^AJK = 1800 - ^QAJ = 1800 - ^QPJ => Tứ giác PQDJ nội tiếp

^PDJ = ^PQJ => ^PDK + ^KDJ = ^PDK + ^QJA = ^PQJ => ^PDK = ^PQJ - ^QJA = 900

=> PD vuông góc AD. Mà BC vuông góc AD tại D nên PD trùng BC hay P nằm trên BC (đpcm).

d) Ta thấy: ^ABC > ^ACB (\(\alpha>\beta\)) => ^BAD < ^CAD. Lại có: ^BAI = ^CAI, ^BAD + ^CAD = ^BAI + ^CAI = ^BAC

Suy ra ^BAD < ^BAI => B và I nằm khác khía so với AD => D thuộc [BF]

Hạ IS, IT vuông góc với AC,AB thì F thuộc [DT] => Thứ tự các điểm trên BC là B,D,F,T,C. Do đó: ^IFC = ^DFK < 900

Ta xét thứ tự các điểm trên cạnh AC: 

+) A,S,E,C: Vì IS vuông góc AC, theo thứ tự này thì ^IEC > 900. Cũng dễ có: \(\Delta\)IES = \(\Delta\)IFT (Ch.cgv)

=> ^IES = ^IFT < 900  => ^IFT + ^IEC = 1800 => Tứ giác FIEC nội tiếp => ^ECF = ^DIK

Mà ^DIK = ^DJK = ^DAI = \(\frac{\alpha-\beta}{2}\) nên \(\beta=\frac{\alpha-\beta}{2}\Rightarrow\alpha=3\beta\) (*)

+) A,E,S,C: Trong TH này thì ^IEC < 900 => ^IFT + ^IEC < 1800 => ^ECF + ^EIF > 1800

=> ^ECF > ^DIK hay \(\beta>\frac{\alpha-\beta}{2}\Rightarrow\alpha< 3\beta\)   (**)

Từ (*) và (**) suy ra: \(\alpha\le3\beta\) (đpcm).

16 tháng 3 2018

Tự vẽ hình nha
c) AE là tia phân giác của góc CAB => sđcEC=sđcEB=> EC=EB=> OE vuông góc vs BC
Góc OAE= góc OEA(1)
OE song song vs AH (cùng vuông góc vs BC)=> OEA=EAH(2)
Từ (1) và (2) => góc OAE= góc EAH => AE là tia phân giác của góc OAH