Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C F E H
a) 2 tam giác FBE và FAE bằng nhau (có thể tự chứng minh đc)
=> AF=FB(2 cạnh tương ứng)
b)Xét tứ giác AFHA có 3 góc đã cho là góc vuông => AEFH là hcn=> EF vuông góc vs FH
c) Do AEFH là hcn => EA=FH (2 cạnh đối)
d)Do tam giác ABF cân tại F nên FE cũng là đường phân giác=> góc BFE=góc AFE
mà góc AFE=góc HEF (do AEFH là hcn)
=> góc BFE=góc HEF=> EH song song vs BC(2 góc sole trong)
* Ta có:
EH song song vs BF và EB song song vs FH => EBFH là hbh => EH=BF(2 cạnh đối)(1)
EF song song vs AC và EF đi qua trung điểm của AB => EF đi qua trung điểm của BC (t/c đường tb đảo)=> BF=1/2.BC(2)
Từ (1) và (2)=> đpcm
a/ tgiác ACD và tgiác AME là hai tgiác vuông tại A.
AD = AE (gt)
góc(ADC) = góc (AEM) (góc có cạnh tương ứng vuông góc)
=> tgiácACD = tgiácAME (g.c.g)
b/ ta có: AG//EH (cùng vuông góc với CD)
=> AG // IH
mà gt => AI // GH
vậy AGHI là hình bình hành
=>AG = IH.
mặt khác theo cm trên ta có: tgiác ACD = tgiác AME
=> AM = AC = AB
=> A là trung điểm BM, mà AI // BC
=> AI là đường trung bình của tgiác MBH
=> I là trung điểm của MH.
vậy: IM = IH = AG
có: AM = AB
góc BAG = góc AMI (so le trong)
=> tgiác AGB = tgiác MIA ( c.g.c)
c/ có AG//MH, A là trung điểm BM
=> AG là đường trung bình của tgiácBMH
=> G là trung điểm BH
hay BG = GH.
a) Vì EF là đường trung trực của AB nên FA = FB ( Theo định lý về t/c đường trung trực của đoạn thẳng)
b)Vì \(\hept{\begin{cases}EF\perp AB\\AC\perp AB\end{cases}}\Rightarrow EF//AC\)
Vì \(\hept{\begin{cases}EF//AC\\FH\perp Ac\end{cases}}\Rightarrow EF\perp FH\left(đpcm\right)\)
c) Xét \(\Delta AEH\)và \(\Delta HFE\)có:
\(\widehat{AHE}=\widehat{HEF}\)(so le trong)
AF: cạnh chung
\(\widehat{AEH}=\widehat{HFE}\)(so le trong,\( AE//FH\))
Suy ra \(\Delta AEH=\)\(\Delta HFE\left(c-g-c\right)\)
Suy ra FH = AE ( hai cạnh tương ứng)
d) Chứng minh EH là đường trung bình sau đó suy ra đpcm
a) Xét \(\Delta ABC\) có:
\(AB=AC\left(gt\right)\)
=> \(\Delta ABC\) cân tại A.
=> \(\widehat{ABC}=\widehat{ACB}\) (tính chất tam giác cân).
b) Ta có: \(\widehat{ABC}=\widehat{ACB}\left(cmt\right)\)
Mà \(\widehat{ECK}=\widehat{ACB}\) (vì 2 góc đối đỉnh).
=> \(\widehat{ABC}=\widehat{ECK}.\)
Hay \(\widehat{DBH}=\widehat{ECK}.\)
Xét 2 \(\Delta\) vuông \(DBH\) và \(ECK\) có:
\(\widehat{DHB}=\widehat{EKC}=90^0\left(gt\right)\)
\(DB=EC\left(gt\right)\)
\(\widehat{DBH}=\widehat{ECK}\left(cmt\right)\)
=> \(\Delta DBH=\Delta ECK\) (cạnh huyền - góc nhọn).
=> \(DH=EK\) (2 cạnh tương ứng).
c) Xét 2 \(\Delta\) vuông \(DHI\) và \(EKI\) có:
\(\widehat{DHI}=\widehat{EKI}=90^0\)
\(DH=EK\left(cmt\right)\)
\(\widehat{DIH}=\widehat{EIK}\) (vì 2 góc đối đỉnh)
=> \(\Delta DHI=\Delta EKI\) (cạnh góc vuông - góc nhọn kề).
=> \(DI=EI\) (2 cạnh tương ứng).
=> \(I\) là trung điểm của \(DE\left(đpcm\right).\)
Chúc bạn học tốt!
Bài 1:
a) Sai đề rồi bạn, đáng lý ra phải là AB=AF mới đúng
Xét ΔABE vuông tại E(AD⊥BE) và ΔAFE vuông tại E(AD⊥BE,F∈BE) có
AE chung
\(\widehat{BAE}=\widehat{FAE}\)(do AE là tia phân giác của góc A)
Do đó: ΔABE=ΔAFE(cạnh góc vuông, góc nhọn kề)
⇒AB=AF(hai cạnh tương ứng)
b) Xin lỗi bạn, mình chỉ biết làm theo cách lớp 8 thôi nhé
Xét tứ giác HFKD có HF//DK(do HF//BC,D∈BC) và HF=DK(gt)
nên HFKD là hình bình hành(dấu hiệu nhận biết hình bình hành)
⇒HD//KF và HD=KF(hai cạnh đối trong hình bình hành HFKD)
c)
Xét ΔABC có AB<AC(gt)
mà góc đối diện với cạnh AB là góc C
và góc đối diện với cạnh AC là góc B
nên \(\widehat{C}< \widehat{B}\)(định lí về quan hệ giữa cạnh và góc đối diện trong tam giác)
hay \(\widehat{ABC}>\widehat{C}\)(đpcm)
Bài 1:
a: Xét ΔCAB và ΔCDE có
CA=CD
góc ACB=góc DCE
CB=CE
Do đó: ΔCAB=ΔCDE
b: Xét tứ giác ABDE có
C là trung điểm chung của AD và BE
nên ABDE là hình bình hành
Suy ra: AB//DE
c: Xét tứ giác BEDF có
BE//DF
BF//DE
Do đó: BEDF là hình bình hành
Suy ra: BE=DF
a: Ta có: F nằm trên đường trung trực của AB
nên FA=FB
c: Xét tứ giác AEFH có góc AEF=góc AHF=góc FAE=90 độ
nên AEFH là hình bình hành
Suy ra: FH=AE
d: Xét ΔABC có EF//AC
nên BF/BC=BE/BE=1/2
=>F là trung điểm của BC
Xét ΔABC có
F là trung điểm của BC
FH//AB
Do đó: H là trung điểm của AC
Xét ΔCAB có
H là trung điểm của AC
E là trung điểm của AB
Do đó: HE là đường trung bình
=>HE//BC vàHE=BC/2