\(\Delta ABC\), đường cao AH biết AH=12cm, trung tuyến AM=13 cm. Tính AB,AC,BC,BH,HC<...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2017

A B C E F H M K I

A. Ta có \(\frac{AH}{AC}=\frac{3}{5}\Rightarrow AC=\frac{5}{3}AH;BC=\frac{AB.AC}{AH}=\frac{AB.5AH}{3.AH}=\frac{5}{3}AB\)

Theo định lí Pitago ta có \(AB^2+AC^2=BC^2\Rightarrow15^2+\frac{25}{9}AH^2=\frac{25}{9}.15^2\Rightarrow AH^2=144\Rightarrow AH=12\left(cm\right)\)

\(\Rightarrow AC=\frac{5}{3}.12=20\Rightarrow BC=\sqrt{15^2+20^2}=25\left(cm\right)\)

Theo hệ thức lượng trong tam giác vuông ta có \(BH=\frac{AB^2}{AC}=9;CH=\frac{AC^2}{BC}=16\left(cm\right)\)

b. Theo hệ thức lượng trong tam giác vuông ta có \(BE=\frac{BH^2}{AB}=5,4\left(cm\right);CF=\frac{CH^2}{AC}=12,8\left(cm\right)\)

Ta có \(AH^3=12^3=1728\)

\(BC.BE.CF=25.5,4.12,8=1728\)

Vậy \(AH^3=BC.BE.CF\)

c. Ta kẻ \(CK⊥BC\)tại M \(\Rightarrow\)yêu cầu bài toán \(\Leftrightarrow\)chứng minh M là trung điểm BC 

Ta gọi I là giao điểm của AH và EF

Xét \(\Delta AKI\)và \(\Delta AHM\)

có \(\hept{\begin{cases}\widehat{K}=\widehat{H}=90^0\\\widehat{Achung}\end{cases}\Rightarrow\Delta AKI~\Delta AHM\left(g-g\right)}\)

\(\Rightarrow\widehat{AIF}=\widehat{AMB}\)

Ta chứng minh được \(AFHE\)là hình chữ nhật vì \(\widehat{F}=\widehat{A}=\widehat{E}=90^0\)

\(\Rightarrow\widehat{IAF}=\widehat{IFA}\)\(\Rightarrow\widehat{FMA}=180^0-2\widehat{MAF}\left(1\right)\)

Lại có \(\widehat{HBA}=\widehat{IAF}\Rightarrow\widehat{AMH}=180^0-2\widehat{HBA}\)

\(\Rightarrow\Delta AMB\)cân tại  I \(\Rightarrow MA=MB\)

Tương tự chứng minh được \(MA=MC\)

Vậy M là trung điểm BC hay ta có đpcm 

20 tháng 6 2019

A B C H M

Ta có \(BC=BH+HC=9+16=25\)

Vì \(\Delta ABC\)vuông tại A có AM là trung tuyến \(\Rightarrow AM=MB=MC=\frac{BC}{2}=\frac{25}{2}\)

Ta có \(HM=MB-BH=\frac{25}{2}-9=\frac{7}{2}\)

\(sin\widehat{HAM}=\frac{HM}{MA}=\frac{7}{2}:\frac{25}{2}=\frac{7}{25}\)

\(cos\widehat{HAM}=\frac{AH}{AM}=12:\frac{25}{2}=\frac{24}{25}\)

\(tan\widehat{HAM}=\frac{HM}{HA}=\frac{7}{2}:12=\frac{7}{24}\)

\(cot\widehat{HAM}=\frac{HA}{HM}=\frac{24}{7}\)

 Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)

16 tháng 7 2021

25/13 nha

13 tháng 10 2017

Xét tam ABH có góc H = 90 độ(gt)

Theo định lí Pitago ta có:

\(BH^2=AB^2-AH^2\)

\(\Rightarrow BH^2=30^2-24^2=900-576=324\)

\(\Rightarrow BH=\sqrt{324}=18\left(cm\right)\)

Xét tam AHM có góc H = 90 độ(gt)

Theo định lí Pitago ta có

\(HM^2=AM^2-AH^2=25^2-24^2=625-576=49\)

\(HM=\sqrt{49}=7\left(cm\right)\)

Xét tam ABC có

BM=BH+HM=18+7=25(cm)

BM = MC(t/c đường trung tuyến)

=>BC=BM+MC=2BM=2*25=50(cm)

13 tháng 10 2017

Xét tam AHC có

HC=HM+MC=7+25=32(cm)

theo định lí Pitago, ta có:

\(AC^2=AH^2+HC^2=24^2+32^2=1600\)

\(\Rightarrow AC=\sqrt{1600}=40\left(cm\right)\)

Xét tam ABC có

\(BC^2=50^2=2500\)(1)

\(AB^2+AC^2=30^2+40^2=900+1600=2500\left(2\right)\)Theo định lí Pitago đảo kết hợp (1)(2)

=>Tam ABC vuông tại A(dpcm)

25 tháng 8 2018

Bài 1: Cho tam giác ABC vuông tại A, đường cao AH. a) Biết AH = 6cm, BH = 4,5cm.Tính AB, AC, BC,HC. b) Biết AB = 6cm, BH = 3cm.Tính AH và tính chu vi của các tam giác vuông trong hình.

Bài 1:

\(HC=\dfrac{AH^2}{HB}=\dfrac{36}{4.5}=8\left(cm\right)\)

BC=BH+CH=12,5cm

\(AB=\sqrt{4.5\cdot12.5}=7.5\left(cm\right)\)

\(AC=\sqrt{8\cdot12.5}=10\left(cm\right)\)

25 tháng 8 2018

Bài 1) Ta có △ABC có đường cao AH ⇒AH2=BH.HC⇒36=4,5.HC⇒HC=8(cm)

Ta có BC=HC+BH=4,5+8=12,5(cm)

Ta có AB2=BH.BC=4,5.12,5=56,25⇒AB=7,5(cm)

Ta có AC2=BC2-AB2=156,25-56,25=100⇒AC=10(cm)

Bài 2) Chắc bạn ghi sai đề rồi

25 tháng 8 2018

bài 2 mình ghi đúng mà bạn

27 tháng 6 2018

Đặt \(\frac{AH}{40}=\frac{AM}{41}=a\Rightarrow AH=40a;AM=41a\)

=> HM=9a và BC=2AM=82a

=> HC=9a+41a=50a

Mà \(\Delta ABC\infty HAC\Rightarrow\frac{AB}{AC}=\frac{HA}{HC}=\frac{40A}{50A}=\frac{4}{5}\)

vẬY ....

^_^

17 tháng 8 2019

\(\text{Hình bạn tự vẽ ^_^}\)

\(\text{a)Ta có: }AB^2=HB.BC=1,8.5=9\)

\(\Rightarrow AB=\sqrt{9}=3\left(\text{cm}\right)\)

\(\text{Lại có: }HC=BC-BH=5-1,8=3,2\left(\text{cm}\right)\)

\(\text{và: }AH^2=BH.CH=1,8.3,2=5,76\)

\(\Rightarrow AH=\sqrt{5,76}=2,4\left(\text{cm}\right)\)

\(\text{b) vì M là trung điểm BC nên }BM=CM=\frac{BC}{2}=\frac{5}{2}=2,5\left(\text{cm}\right)\)

\(\text{Ta lại có: }AC^2=CH.BC=3,2.5=16\)

\(\Rightarrow AC=\sqrt{16}=4\left(\text{cm}\right)\)

\(\text{Xét }\Delta DMC\text{ và }\Delta BAC\text{ có:}\)

\(\widehat{DMC}=\widehat{BAC}=90^o\)

\(\widehat{C}\text{ là góc chung}\)

\(\text{ }\Rightarrow\Delta DMC\text{ đồng dạng với }\Delta BAC\)

\(\Rightarrow\frac{DM}{AB}=\frac{DC}{BC}=\frac{CM}{AC}=\frac{2,5}{4}=0,625\left(\text{Tỉ số đồng dạng}\right)\)

\(\text{Vậy }\frac{S_{DMC}}{S_{BAC}}=\left(0,625\right)^2=\frac{25}{64}\)

17 tháng 8 2019

a, \(AB=\sqrt{BH\cdot BC}=\sqrt{1,8\cdot5}=3\)

\(AH=\sqrt{AB^2-BH^2}=\sqrt{3^2-1,8^2}=2,4\)

b, \(\frac{S_{ABC}}{S_{DMC}}=\frac{MC^2}{BC^2}=\frac{1}{4}\)

c,\(\Delta ABC~\Delta MDC\Rightarrow\frac{BC}{DC}=\frac{AC}{MC}\Rightarrow AC\cdot CD=\frac{1}{2}BC^2\)

d,Cái này bạn tự tính nhá

Mk hơi lười nên làm hơi tắt có j thông cảm mk nha