\(\Delta ABC\) có \(\widehat{A}=70\) độ. Kẻ
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2018

a) Xét \(\Delta AHB\)\(\Delta DBH\), ta có:

BD=AH (gt)

\(\widehat{DBH}=\widehat{BHA}\) (=\(90^0\))

BH chung

\(\Rightarrow\Delta AHB=\Delta DBH\) (c-g-c)

b) Vì \(AH\perp BH\)\(BD\perp BH\)\(\Rightarrow\)AB//HD (đpcm)

c) Xét \(\Delta BOD\)\(\Delta HOA\), ta có:

\(\widehat{DBO}=\widehat{AOH}\) \(\left(=90^0\right)\)

BD=AH (gt)

\(\widehat{BOD}=\widehat{HOA}\) (đối đỉnh)

\(\Rightarrow\Delta BOD=\Delta HOA\) (g-c-g)

\(\Rightarrow BO=OH\) (2 cạnh tương ứng) (1)

\(O\in BH\) (2)

Từ (1),(2)\(\Rightarrow\)O là trung điểm của BH

d) (để suy nghĩ)lolang

7 tháng 3 2020

Câu D góc bdh k bằng 35 độ đc vì góc a bằng 35 độ mà góc bah bé hơn góc a vì tam giác ahb = tam giác dbh thì góc bah = góc bdh suy ra bdh không bằng 35 độ trên thực tế cái đấy đề cho thôi cứ tính như đề cho thì acb = 90 độ

 

2 tháng 8 2019

a) Xét \(\Delta AHB\)và \(\Delta DBH\)có:

          \(BH:\)cạnh chung

          \(AH=DB\)(gt)

Suy ra \(\Delta AHB=\)\(\Delta DBH\left(2cgv\right)\)

b) Vì  \(\Delta AHB=\)\(\Delta DBH\)(c/m ở câu a) nên \(\widehat{ABH}=\widehat{DHB}\)(hai góc tương ứng)

Mà hai góc này ở vị trí so le trong nên \(AB//DH\)

c) \(\Delta ABH\)vuông tại H có \(\widehat{BAH}=35^0\)nên \(\widehat{ABH}=90^0-35^0=55^0\)

hay \(\widehat{ABC}=55^0\)

\(\Delta ABC\)vuông tại A có \(\widehat{ABC}=55^0\)nên \(\widehat{ACB}=90^0-55^0=35^0\)

Vậy \(\widehat{ACB}=35^0\)

24 tháng 1 2018

Câu hỏi của Lê Thu Phương Anh - Toán lớp 7 - Học toán với OnlineMath

Em tham khảo tại đây nhé.

15 tháng 2 2019

a, xét tam giác AHB và tam giác DBH có : HB chung

góc AHB = góc HBD = 90 do AH _|_ BC (gt) và Bx _|_ BC (gt)

AH = BD (gt)

=> tam giác AHB = tam giác DBH (2cgv)

b, tam giác AHB = tam giác DBH (câu a)

=>  góc DHB = góc HBA (đn) mà 2 góc này so le trong

=> HD // AB (đl_

c, câu này dễ tự tính được

Bài 1:Cho góc nhọn xOy.Trên tia Ox lấy điểm A,trên tia Oy lấy điểm B sao cho OA=OB.Trên tia Ax lấy điểm C,trên tia By lấy điểm D sao cho AC=BDa) Chứng minh:AD=BCb) Gọi E là giao điểm AD và Bc.Chứng minh:\(\Delta EAC=\Delta EBD\)c) Chứng minh:OE là phân giác của góc xOyBài 2:Cho \(\Delta ABC\)có \(\widehat{A}=90^o\).Kẻ AH vuông góc với BC \(\left(H\varepsilon BC\right)\).Trên đường thẳng vuông góc với BC tại B lấy điểm D...
Đọc tiếp

Bài 1:

Cho góc nhọn xOy.Trên tia Ox lấy điểm A,trên tia Oy lấy điểm B sao cho OA=OB.Trên tia Ax lấy điểm C,trên tia By lấy điểm D sao cho AC=BD

a) Chứng minh:AD=BC

b) Gọi E là giao điểm AD và Bc.Chứng minh:\(\Delta EAC=\Delta EBD\)

c) Chứng minh:OE là phân giác của góc xOy

Bài 2:

Cho \(\Delta ABC\)có \(\widehat{A}=90^o\).Kẻ AH vuông góc với BC \(\left(H\varepsilon BC\right)\).Trên đường thẳng vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao  cho BD=AH

Chứng minh rằng:

a) \(\Delta AHB=\Delta DBH\)

b) AB//DH

c) Tính \(\widehat{ACB}\),biết \(\widehat{BAH=35^o}\)

Bài 3:

Cho \(\overline{\Delta}ABC\) vuông tại A có \(\overline{\Delta}B=30^o\)

a) Tính \(\Delta C\)

b) Vẽ tia phân giác của góc C cắt cạnh AB tại D

c) Trên cạnh CB lấy điểm M sao cho CM=CA.Chứng minh \(\Delta ACD=\Delta MCD\)

d) Qua C vẽ đường thẳng xy vuông góc CA.Từ A kẻ đường thẳng song song với CD cắt xy ở K.Chứng minh:AK=CD

e) Tính \(\DeltaẠKC\)

Bài 4:

Cho tam giác ABC vuông tại A,có AB=AC.Gọi K là trung điểm của cạnh BC

a) Chứng minh \(\Delta AKB=\Delta AKC\)và \(AK⊥BC\)

b) Từ C kẻ đường vuông góc với BC,nó cắt AB tại E.Chứng minh EC//AK

c) Chứng minh CE=CB

0
23 tháng 12 2016

a)

Xét tam giác AHB và tam giác DBH có:

AH = DB (gt)

AHB = DBH (= 900)

BH chung

=> Tam giác AHB = Tam giác DBH (c.g.c)

b)

DB _I_ BC (gt)

AH _I_ BC (gt)

=> DB // AH

c)

Tam giác HAB vuông tại H có:

HAB + HBA = 900

350 + HBA = 900

HBA = 900 - 350

HBA = 550

Tam giác ABC vuông tại A có:

ABC + ACB = 900

550 + ACB = 900

ACB = 900 - 550

ACB = 350

29 tháng 11 2018

A B C H D 35°

GT| \(\widehat{BAC}=90\text{°}\)
\(AH\perp BC\)tại H 
Trên đường thẳng vuông góc tại B lấy D sao cho BD = AH 
\(\widehat{BAH}=35\text{°}\)
KL | 
AB // DH 

Xét \(\Delta AHB\&\Delta DBH\) ta có :

AH = BD ( hình vẽ )

BH cạnh chung 

AB = HD ( gt )

=> \(\Delta AHB=\Delta DBH\)( c.c.c )

b) Ta có :

\(\Delta AHB=\Delta DBH\) ( cmt )

\(\Rightarrow\widehat{ABH}=\widehat{DBH}\)( 2 góc tương ứng )

mà \(\widehat{ABH}\&\widehat{DBH}\)là 2 góc SLT 

=> AB // DH