Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)
Vì PE=PH, mà PH lại vuông góc vs AB
=> BP là đường trung trực của EH
=> ∆BEH là tam giác cân
=> Góc E= góc BHE
Tương tự vậy ∆CHF cũng cân
=> Góc F= góc CHF
Lại có HQ vuông góc AB, BA vuông AC( vì BAC là góc vuông)
=> AB//HQ
=> góc PHQ=90độ ( trong cùng phía vs góc AQH)
Vậy ta có góc EHB + góc FHC =90 độ
Ta có góc E+ góc EBH+góc EHB + góc FHC+ góc F+ FCH = 360 độ ( = tổng 6 gióc 2 tam giác BEH và CFH)
<=>2(góc EHB+góc FHC) + góc EBH + góc FCH = 360 độ
<=>2.90 độ + góc EBH + góc FCH = 360 độ
<=> góc EBH + góc FCH = 360 độ - 180 độ = 180 độ
Ta thấy Góc EBH và góc FCH ở vị trí trong cùng phía bù nhau
=>BE//CF
Hình vẽ
B H C P E A F Q
Bài làm
Câu a)
Có góc APH = 90 độ ( HP vuông góc với AB)
Mà góc APH + góc APE = 180 độ (kề bù)
Suy ra góc APE = APH = 90 độ
Xét tam giác APE và tam giác APH có
+ PE = PH (gt)
+ góc APE = góc APH = 90 độ (cmt)
+ AP là cạnh chung
Do đó tam giác APE = tam giác APH (c.g.c)
Có góc AQH + góc AQF = 180 độ (kề bù)
Suy ra góc AQH = góc AQF = 90 độ
Xét tam giác AQH và tam giác AQF có
+ QH = QF (gt)
+ góc AQH = góc AQF = 90 độ (cmt)
+ AQ là cạnh chung
Do đó tam giác AQH = tam giác AQF
Câu b)
Gợi ý: Để chứng minh E, A, F thẳng hàng cần phải chứng minh (cách đơn giản nhất) góc EAF là góc bẹt hay nói cách khác là góc EAF = 180 độ
Trong hình có
Vì tam giác AQF = tam giác AQH (cmt)
Nên góc QAF = góc QAH (hai góc tương ứng)
Vì tam giác APE = tam giác APH (cmt)
Nên góc PAE = góc PAH (hai góc tương ứng)
Mà góc PAQ = góc QAH + góc PAH = 90 độ ( AH nằm giữa AP và AQ)
Suy ra góc QAF + góc PAE = 90 độ
Mà góc EAF = góc EAP + góc BAC + góc QAF
Suy ra góc EAF = 90 độ + góc EAP + góc QAF
Suy ra góc EAF = 90 độ + 90 độ = 180 độ
Vậy E, A, F thẳng hàng
â) Áp dụng định lý pytago thuận vào \(\Delta ABC\)vuông tại A ,co :
\(BC^2=AB^2+AC^2\)
\(BC^2=9^2+12^2\)
\(BC^2=81+144\)
\(BC^2=225\)
\(BC=\sqrt{25}\)
\(BC=15\left(cm\right)\)
b) Câu b này bạn viết sai đề nha ,( tia phân giác của gocB cắt AC tại D) mới đúng nha :)
Xét : \(\Delta ABDva\Delta MBD,co:\)
\(\widehat{A}=\widehat{M}=90^o\)
BD là cạnh chung
\(\widehat{B_1}=\widehat{B_2}\) ( BM là tia phân giác (gt) )
Do do : \(\Delta ABD=\Delta MBD\) ( cạnh huyền - cạnh góc vuông )
c)
Xét : \(\Delta AEDva\Delta MCD,co:\)
\(\widehat{A}=\widehat{M}=90^o\)
\(\widehat{D_1}=\widehat{D_2}\) ( hai góc đối đỉnh )
AD = AM ( hai cạnh tương ứng của hai tam giác bằng nhau )
Do do : \(\Delta AED=\Delta MCD\) ( g - c -g )
=> AE = MC ( hai cạnh tương ứng ) ( 1 )
mà :
BA = BM ( hai cạnh tương ứng của hai tam giác bằng nhau ) ( 2 )
BE = BA + AE ( vì A nằm giữa B và E ) ( 3 )
BC = BM + MC ( vì M nằm giữa B và C ) ( 4 )
Từ ( 1 ) , ( 2 ) , ( 3 ) vả ( 4 ) suy ra BE = BC
=> \(\Delta BEC\) cân tại B ( hai cạnh bên bằng nhau )
HÌNH MÌNH VẼ HƠI XẤU NHA :)
CHÚC BẠN HỌC TỐT !!!
a: Xét ΔAPE vuông tại P và ΔAPH vuông tại P có
AP chung
PE=PH
Do đó: ΔAPE=ΔAPH
Suy ra: \(\widehat{EAP}=\widehat{HAP}\)
hay AB là phân giác của góc HAE(1)
Xét ΔAHQ vuông tại Q và ΔAFQ vuông tại Q có
AQ chung
HQ=FQ
Do đó: ΔAHQ=ΔAFQ
Suy ra: \(\widehat{HAQ}=\widehat{FAQ}\)
hay AC là tia phân giác của góc FAH(2)
b: Từ (1) và (2) suy ra \(\widehat{FAE}=2\cdot90^0=180^0\)
=>F,A,E thẳng hàng
a: Xét ΔAPE vuông tại p và ΔAPh vuông tại P có
AP chung
PE=PH
DO đó: ΔAPE=ΔAPH
Xét ΔAQH vuông tại Q và ΔAQF vuông tại Q có
AQ chung
QH=QF
Do đó: ΔAQH=ΔAQF
b: Ta có: ΔAHP=ΔAEP
nen góc HAP=góc EAP
=>AB là phân giác của góc HAE(1)
Ta có: ΔAHQ=ΔAFQ
nen góc FAC=góc HAC
=>AC là phân giác của góc HAF(2)
Từ (1) và (2) suy ra góc FAE=2x90=180 độ
=>F,A,E thẳng hàng
mà AE=AF
nên A là trung điểm của FE
c: Xét ΔAHB và ΔAEB có
AH=AE
góc HAB=góc EAB
AB chung
Do đo: ΔAHB=ΔAEB
Suy ra: góc AEB=90 độ
=>BE vuông góc với EF(3)
Xét ΔCHA và ΔCFA có
CH=CF
AH=AF
CA chung
Do đó: ΔCHA=ΔCFA
Suy ra góc CFA=90 độ
=>CF vuông góc với FE(4)
Từ (3) và (4) suy ra BE//CF