\(a+b+c+d\ne0\)sao cho \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2016

bạn áp dụng dãy tỉ số bằng nhau là xong

28 tháng 7 2016

1) \(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)

-->\(\frac{a}{b}=\frac{a-c}{b-d}\left(đpcm\right)\)

2) ta có \(\frac{a}{b}=\frac{c}{d}\)

đặt a=kb và c=kd

\(\frac{a+b}{a-b}=\frac{kb+b}{kb-b}=\frac{b\left(k+1\right)}{b\left(k-1\right)}=\frac{k+1}{k-1}\left(1\right)\)

\(\frac{c+d}{c-d}=\frac{kd+d}{kd-d}=\frac{d\left(k+1\right)}{d\left(k-1\right)}=\frac{k+1}{k-1}\left(2\right)\)

từ (1) và (2) --> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\left(đpcm\right)\)

21 tháng 1 2018

Áp dụng TCDTSBN ta có:

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a+b+c+d khác 0)

=>a=b=c=d

=>M=\(\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}=\frac{1}{2}\cdot4=2\)

23 tháng 1 2018

Ta có:a/b=b/c=c/d=d/a

Áp dụng tính chất dãy tỉ số bằng nhau, ta được:a/b=b/c=c/d=(a+b+c+d)/(b+c+d+a)=1

=>a=b=c=d(vì a/b=b/c=c/d=d/a=1)

Thay vào M sau đó tìm được M=2

15 tháng 11 2016

onl ko nt

15 tháng 11 2016

Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\) (đề bài)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)

\(\Rightarrow\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{d}=1\\\frac{d}{a}=1\end{cases}\Rightarrow\begin{cases}a=b\\b=c\\c=d\\d=a\end{cases}\)

\(\Rightarrow a=b=c=d\)

Thay \(b=a\) ; \(c=a\) ; \(d=a\) vào biểu thức \(M=\frac{2a-b}{c+d}=\frac{2b-c}{d+a}=\frac{2c-d}{a+b}=\frac{2d-a}{b+c}\) ta có :
\(M=\frac{2a-a}{a+a}=\frac{2a-a}{a+a}=\frac{2a-a}{a+a}=\frac{2a-a}{a+a}\)

\(M=\frac{1a}{2a}=\frac{1a}{2a}=\frac{1a}{2a}=\frac{1a}{2a}=\frac{1}{2}\)

Vậy \(M=\frac{1}{2}\)

13 tháng 10 2016

\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\) (vì a + b + c + d khác 0) nên a = b = c = d

\(\Rightarrow\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{b+c}=\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}+\frac{2a-a}{a+a}\)

\(=\frac{1}{2}.4=2\)

17 tháng 5 2017

 Vì  \(\frac{a}{b+c+d}\)=   \(\frac{b}{a+c+d}\)=  \(\frac{c}{a+b+d}\)\(\frac{d}{a+b+c}\)nên

 \(\frac{a}{b+c+d}\)+1 = \(\frac{b}{a+c+d}\)+1 = \(\frac{c}{a+b+d}\)+1 = \(\frac{d}{a+b+c}\) +1

hay\(\frac{a+b+c+d}{b+c+d}\) =     \(\frac{a+b+c+d}{a+c+d}\)=      \(\frac{a+b+c+d}{a+b+d}\)=    \(\frac{a+b+c+d}{a+b+c}\)

Mà a + b + c + d \(\ne\)0  \(\Rightarrow\) \(b+c+d=a+c+d=a+b+d=a+b+c\)

                                       \(\Rightarrow\)     \(a=b=c=d\)

                                      \(\Rightarrow\) \(M=4\)

12 tháng 11 2016

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\) =\(\frac{a+b+c+d}{b+c+d+a+c+d+a+b+d+a+b+c}\)

Vì a+b+c+d khác 0

=> b+c+d=a+c+d=a+b+d=a+b+c

=>a=b=c=d

Khi đó:

a + b = c+d

b+c= (a+d)

c+d=a+b

d+a=b+c

=>\(\frac{a+b}{c+d}=\frac{b+c}{a+d}=\frac{c+d}{a+b}=\frac{d+a}{b+c}=1\)

 

 

 

12 tháng 11 2016

mk có chút nhầm lẫn các đấu = phải là +

5 tháng 7 2016

Xem lại đề ==

12 tháng 2 2017

\(\frac{a}{b+c+d}=\frac{b}{c+d+a}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)

\(\Rightarrow\frac{a}{a+b+d}+1=\frac{b}{c+d+a}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)

\(=\frac{a}{a+b+c+d}=\frac{b}{a+b+c+d}=\frac{c}{a+b+c+d}=\frac{d}{a+b+c+d}\)

\(\Rightarrow a=b=c=d\) Thay vào A ta được :

\(A=\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}+\frac{a+a}{a+a}=1+1+1+1=4\)