Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Ta có:
\(\dfrac{A}{B}=\dfrac{1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{4026}}{1+\dfrac{1}{3}+\dfrac{1}{5}+\dfrac{1}{7}+...+\dfrac{1}{4025}}\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{\left(1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{4025}\right)+\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2046}\right)}{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{4025}}\)
\(\Rightarrow\dfrac{A}{B}=\dfrac{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{4025}}{1+\dfrac{1}{3}+\dfrac{1}{5}+....+\dfrac{1}{4025}}+\dfrac{\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{4026}}{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{4025}}\)
\(\Rightarrow\dfrac{A}{B}=1+\dfrac{\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2046}}{1+\dfrac{1}{3}+\dfrac{1}{5}+...+\dfrac{1}{4025}}\)
Dễ thấy \(\dfrac{A}{B}>1\)
Mà \(\dfrac{2013}{2014}< 1\)
\(\Rightarrow\dfrac{A}{B}>1\dfrac{2013}{2014}\)
Ta có:
*) \(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2015}\)
\(\Rightarrow S=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2014}\right)\)
\(\Rightarrow S=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{1}{6}+...+\dfrac{1}{2014}\right)\)
\(\Rightarrow S=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1007}\right)\)
\(\Rightarrow S=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)
Vậy \(\left(S-B\right)^{2016}=\left[\left(\dfrac{1}{1008}+\dfrac{1}{1009}+...+\dfrac{1}{2015}\right)-\left(\dfrac{1}{1008}+\dfrac{1}{1009}+...+\dfrac{1}{2015}\right)\right]^{2016}\)
\(\Rightarrow\left(S-B\right)^{2016}=0^{2016}\)
\(\Rightarrow\left(S-B\right)^{2016}=0\)
Ta có:
\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2013}-\dfrac{1}{2014}\)
\(=\left(1+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2014}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-2\left(1+\dfrac{1}{2}+...+\dfrac{1}{2014}\right)\)
\(=\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2015}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{2017}\right)\)
\(=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)
Mà \(P=\dfrac{1}{1008}+\dfrac{1}{1009}+\dfrac{1}{1010}+...+\dfrac{1}{2015}\)
\(\Rightarrow S=P\Rightarrow S-P=0\)
\(\Rightarrow\left(S-P\right)^{2016}=0^{2016}=0\)
Vậy \(\left(S-P\right)^{2016}=0\)
1. Tính:
a. \(\dfrac{\text{−1 }}{\text{4 }}+\dfrac{\text{5 }}{\text{6 }}=\dfrac{-3}{12}+\dfrac{10}{12}=\dfrac{7}{12}\)
b. \(\dfrac{\text{5 }}{\text{12 }}+\dfrac{\text{-7 }}{8}=\dfrac{10}{24}+\dfrac{-21}{24}=\dfrac{-11}{24}\)
c. \(\dfrac{-7}{6}+\dfrac{-3}{10}=\dfrac{-35}{30}+\dfrac{-9}{30}=\dfrac{-44}{30}=\dfrac{-22}{15}\)
d.\(\dfrac{-3}{7}+\dfrac{5}{6}=\dfrac{-18}{42}+\dfrac{35}{42}=\dfrac{17}{42}\)
2. Tính :
a. \(\dfrac{2}{14}-\dfrac{5}{2}=\dfrac{2}{14}-\dfrac{35}{14}=\dfrac{-33}{14}\)
b.\(\dfrac{-13}{12}-\dfrac{5}{18}=\dfrac{-39}{36}-\dfrac{10}{36}=\dfrac{49}{36}\)
c.\(\dfrac{-2}{5}-\dfrac{-3}{11}=\dfrac{-2}{5}+\dfrac{3}{11}=\dfrac{-22}{55}+\dfrac{15}{55}=\dfrac{-7}{55}\)
d. \(0,6--1\dfrac{2}{3}=\dfrac{6}{10}--\dfrac{5}{3}=\dfrac{3}{5}+\dfrac{5}{3}=\dfrac{9}{15}+\dfrac{25}{15}=\dfrac{34}{15}\)
3. Tính :
a.\(\dfrac{-1}{39}+\dfrac{-1}{52}=\dfrac{-4}{156}+\dfrac{-3}{156}=\dfrac{-7}{156}\)
b.\(\dfrac{-6}{9}-\dfrac{12}{16}=\dfrac{2}{3}-\dfrac{3}{4}=\dfrac{8}{12}-\dfrac{9}{12}=\dfrac{-17}{12}\)
c. \(\dfrac{-3}{7}-\dfrac{-2}{11}=\dfrac{-3}{7}+\dfrac{2}{11}=\dfrac{-33}{77}+\dfrac{14}{77}=\dfrac{-19}{77}\)
d.\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(=\dfrac{1}{1}+\dfrac{1}{10}\)
\(=\dfrac{10}{10}-\dfrac{1}{10}\)
= \(\dfrac{9}{10}\)
Chế Kazuto Kirikaya thử tham khảo thử đi !!!
Mấy câu trên kia dễ rồi mình chữa mình câu \(c\) bài \(3\) thôi nhé Kazuto Kirikaya
d) \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
B=\(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\)
=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}+\dfrac{1}{1007}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)\)- \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}\right)\)
=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}+\dfrac{1}{1007}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)\)-2\(\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)
=1-\(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...-\dfrac{1}{2012}+\dfrac{1}{2013}\)=S
( A-B)2013 =0
Chúc ban học tốt nhé...!
\(S=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\\ =\left(1+\dfrac{1}{3}+...+\dfrac{1}{2011}+\dfrac{1}{2013}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-2\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\\ =\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}\right)\\ =\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\\ \Rightarrow S-P=0\\ \Rightarrow\left(S-P\right)^{2018}=0\)
Bài 1:
a: \(=\dfrac{1}{2}-\dfrac{7}{13}-\dfrac{1}{3}-\dfrac{6}{13}+\dfrac{1}{3}+\dfrac{4}{3}=\dfrac{4}{3}-1+\dfrac{1}{2}=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\)
b: \(=\dfrac{3}{4}+\dfrac{2}{5}+\dfrac{1}{9}-1-\dfrac{2}{5}+\dfrac{5}{4}=2-1+\dfrac{1}{9}=\dfrac{10}{9}\)
c: \(=\left(\dfrac{-3}{2}\cdot\dfrac{4}{3}\right)\cdot\dfrac{-9}{2}-\dfrac{1}{2}=9-\dfrac{1}{2}=8.5\)
1) So sánh các lũy thừa
a.
4444\(^{3333}\) và 3333\(^{4444}\)
4444\(^{3333}\) =(4\(^3\)\()\) \(^{111}\)
3333\(^{4444}\) =\((\)3\(^4\)\()\) \(^{111}\)
\(\rightarrow\) (4\(^3\)\()\) \(^{111}\) =64\(^{111}\) ; \((\)3\(^4\)\()\) \(^{111}\) =81\(^{111}\)
\(\rightarrow\)64\(^{111}\) <81\(^{111}\)
\(\Rightarrow\) 4444\(^{3333}\) < 3333\(^{4444}\)
Lười làm quá,ý còn lại bn làm tương tự,có ý lấy số chung để so sánh,có ý lấy số mũ để so sánh,có ý như trên.
Bạn thiếu đề rồi phải là trừ hay cộng j j chứ.
Xét:
`A+B=2+1/2+1/3+1/4+......+1/4026+1/3+1/5+1/7+......+1/4025`
`1/2+1/3+1/4+......+1/4026+1/3+1/5+1/7+......+1/4025>0`
`=>A+B>2`
Mà `1 2013/2014<2`
`=>A+B>1 2013/2014`