Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_n}{a_{n+1}}=\frac{a_1+a_2+...+a_n}{a_2+a_3+...+a_{n+1}}\)
\(\Rightarrow\)\(\frac{a_1^n}{a_2^n}=\frac{a_2^n}{a_3^n}=...=\frac{a_n^n}{a_{n+1}^n}=\frac{a_1^n+a_2^n+...+a_n^n}{a_2^n+a_3^n+...+a_{n+1}^n}=\frac{\left(a_1+a_2+...+a_n\right)^n}{\left(a_2+a_3+...+a_{n+1}\right)^n}=\frac{a_1.a_2...a_n}{a_2.a_3...a_{n+1}}=\frac{a_1}{a_{n+1}}\)
Theo tính chất của dãy tỉ số bằng nha, ta có :
\(\dfrac{a_1}{a_2}=\dfrac{a_2}{a_3}=.....=\dfrac{a_n}{a_{n+1}}=\dfrac{a_1+a_2+....+a_n}{a_2+a_3+....+a_{n+1}}\)
\(\Rightarrow\dfrac{a_1}{a_2}=\dfrac{a_1+a_2+....+a_n}{a_2+a_3+....+a_{n+1}}\)
\(\dfrac{a_2}{a_3}=\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\)
.................................
\(\dfrac{a_n}{a_{n+1}}=\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\)
\(\Rightarrow\left(\dfrac{a_1+a_2+.....+a_n}{a_2+a_3+.....+a_{n+1}}\right)^n=\dfrac{a_1}{a_2}.\dfrac{a_2}{a_3}........\dfrac{a_n}{a_{n+1}}\)
Vậy \(\left(\dfrac{a_1+a_2+......+a_n}{a_2+a_3+......+a_{n+1}}\right)=\dfrac{a_1}{a_{n+1}}\) (đpcm)
~ Học tốt ~
áp dụng t.c dãy tỉ số bằng nhau ta có:
\(\frac{a1}{a2}=\frac{a2}{a3}=\frac{a3}{a4}=.....=\frac{an}{an+1}=\frac{a1+a2+a3+....+an}{a2+a3+a4+...+an+1}\)
\(\frac{a1}{a2}\cdot\frac{a2}{a3}\cdot\frac{a3}{a4}\cdot...\cdot\frac{an}{an+1}=\frac{a1}{an+1}=\left(\frac{a1}{a2}\right)^n=\left(\frac{a1+a2+a3+....+an}{a2+a3+a4+...+an+1}\right)^n\)(vì từ 1 đến n có n chữ số)
=> đpcm
Chả biết đúng hay sai! Cứ làm vậy
Ta có: \(\frac{a_1}{a_2}=\frac{a_2}{a_3}=...=\frac{a_{n-1}}{a_n}=\frac{a_n}{a_1}\)
\(=\frac{a_1+a_2+...+a_{n-1}+a_n}{a_2+a_3+..+a_n+a_1}=1\Rightarrow a_1=a_2=...=a_n\) (theo t/c tỉ dãy số bằng nhau)
Do đó:
a) \(\frac{a_1^2+a_2^2+...+a_n^2}{\left(a_1+a_2+...+a_n\right)^2}=\frac{na_1^2}{\left(na_1\right)^2}=\frac{na_1^2}{n^2a_1^2}=\frac{1}{n}\)
b) \(\frac{a_1^7+a_2^7+...+a_n^7}{\left(a_1+a_2+...+a_n\right)^7}=\frac{na_1^7}{\left(na_1\right)^7}=\frac{na_1^7}{n^7a_1^7}=\frac{n}{n^7}\)
Bạn gì có nhãn "CTV" gì ấy trả lời đúng không vậy mn? Đang bí bài này...=((
Đặt \(f\left(n\right)=a_0+a_1+...+a_n-na_{n+1}\); Ta có \(f\left(0\right)=a_0\)
Bởi vì \(a_{n+2}\ge a_{n+1}\) nên ta có:
\(a_0+a_1+...+a_n-na_{n+1}>a_0+a_1+...+a_n+a_{n+1}-\left(n+1\right)a_{n+2}.\)
Vậy thì \(f\left(n\right)>f\left(n+1\right)\) hay \(f\left(n\right)\) là dãy đơn điệu giảm.
Bởi vậy, vì \(f\left(0\right)>0\) nên tồn tại duy nhất số m thỏa mãn \(f\left(m-1\right)>0\ge f\left(m\right).\)
Mặt khác, ta lại có:
\(a_0+a_1+...+a_{m-1}-\left(m-1\right)a_m>0;a_0+a_1+...+a_m-ma_{m+1}\le0\)
Từ đó suy ra:
\(a_m< \frac{a_0+a_1+...+a_m}{m}\le a_{m+1}\)
Đặt \(h\left(n\right)=a_0+a_1+...+a_m-ma_m\). Bởi vì \(a_{n+1}>a_n\) nên ta có:
\(a_0+a_1+...+a_n-na_n>a_0+a_1+...+a_n+a_{n+1}-\left(n+1\right)a_{n+1}.\)
Vậy \(h\left(n\right)\) cũng là dãy đơn điệu giảm.
Chú ý rằng: \(h\left(m+1\right)=a_0+a_1+...+a_{m+1}-\left(m+1\right)a_{m+1}\le0.\)
nên \(h\left(t\right)\le0\forall t>m.\) Vì vậy, \(h\left(n\right)>0\) sẽ không thỏa mãn với n > m. Vậy m là số duy nhất thỏa mãn.
Đây là bài tập trong đề thi IMO 2014 tại Nam Phi. Đề bài chính xác thì bất đẳng thức đằng sau có dấu bằng. Đây là bài cô dịch từ bài giải bằng tiếng anh của tác giả Gerhard Woeginger, Australia.
Bài này khó thật !