Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có nhận xét: Trong 3 số liên tiếp bao giờ cũng có 1 số chia hết cho 3.
Ta có: 2n - 1 , 2n , 2n + 1 là ba số liên tiếp mà theo giả thiết 2n - 1 là số nguyên tố lớn hơn 3 (vì n > 2) => 2n - 1 không chia hết cho 3; Số 2n cũng không chia hết cho 3 => Số 2n + 1 phải chia hết cho 3 => 2n + 1 là hợp số.
dễ chết cha
Vi 2^n-1 la so nguyen to lon hon 2 nen 2^n-1 co 3 dang:
3k;3k+1;3k+2(k thuoc N*)
Với 2^n-1 =3k và 2^n-1 là số nguyên tố suy ra 2^n-1=3 suy ra n=2 (loại vi n>2)
Voi 2^n-1=3k+1 suy ra 2^n=3k+2
ta co:2^n+1=3k+2+1=3k+3=3(k+1)
Vì 3 chia hết cho3 suy ra 3(k+1) chia hết cho 3 hay 2^n+1 chia hết cho 3
Voi 2^n-1=3k+2 suy ra 2^n=3k (loai vi 2 khong chia het cho 3 suy ra 2^n khong chia het cho 3 ma 3k chia het cho3 )
Vay ..................................
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
Ta có : 2n-1 , 2n , 2n+1 là 3 số tự nhiên liên tiếp ( n > 2 )
ta thấy trong 3 số tự nhiên liên tiếp sẽ có 1 số chia hết cho 3
2n-1 là số nguyên tố
2n \(⋮\)2 và > 2 nên 2n là hợp số mà 2n \(⋮̸\)3
nên 2n + 1 \(⋮\)3 và > 3 vì 2n-1 và 2n đều \(⋮̸\) 3 ( n > 2 )
\(\Rightarrow\)2n + 1 là hợp số
1,
Đặt A = n3 - n2 + n - 1
Ta có A = n2(n - 1) + (n - 1) = (n - 1)(n2 + 1)
Vì A nguyên tố nên A chỉ có 2 Ư. Ư thứ 1 là 1 còn Ư thứ 2 nguyên tố nên ta suy ra 2 trường hợp :
TH1 : n - 1 = 1 và n2 + 1 nguyên tố
⇒
n = 2 và n2 + 1 = 5 nguyên tố (thỏa)
TH2 : n2 + 1 = 1 và n - 1 nguyên tố
⇒
n = 0 và n - 1 = - 1( ko thỏa)
Vậy n = 2
2 ,
Xột số A = (2n – 1)2n(2n + 1)
A là tích của 3 số tự nhiên liờn tiệp nên A ⋮ 3
Mặt khỏc 2n – 1 là số nguyên tố ( theo giả thiết )
2n không chia hết cho 3
Vậy 2n + 1 phải chia hết cho 3 ⇒ 2n + 1 là hợp số.
2. a) Nếu n = 3k +1 thì n2 + (3k+1) (3k+1) hay n2 = 3k(3k+1)+ 3k +1.
Rõ ràng n2 chia co 3 dư 1.
Nếu n= 3k+2 thì n2 = (3k+2) (3k+2) hay n2 =3k(3k+2)+ 2 ( 3k + 2)
= 3k (3k+2 ) + 6k +4.
2 số hạngđầu chia hết cho 3, số hạng cuối chia cho 3 dư 1 nên n2 chia cho 3 dư 1.
b) p là số nguyên tố lớn hơn 3 nên không chia hết cho 3. vậy p2 chia cho 3 duw1 tức là p2 = 3k+1 do đó p2 + 2018 = 3k +1 + 2018 = 3k + 2019 cha hết cho 3. Vậy p2 + 2018 là hợp số
Tớ xin llõi, tớ muốn giúp cậu lắm nhưng tớ chua học, xin lõi nhé!
1.+/n ko chia het cho3
*Voi n=3k+1(dk cua k)
=>n^2-1=(3k+1)^2-1=9k^2+6k+1-1=9k^2+6k
=3(3k^2+2k) chia het cho 3
ma n^2-1>3 voi n>2;n ko chia het cho 3
=>n^2-1 la hop so tai n chia 3 du 1(n>2)
*Voi n=3p+2(dk cua p)
=>n^2-1=(3p+2)^2-1=9p^2+12p+4-1
=9p^2+12p+3
=3(3p^2+4p+1) chia het cho 3
ma n^2-1>3 voi n>2;n ko chia het cho 3
=>n^2-1 la hop so tai n chia 3 du 2(n>2)
=>n^2-1 la hop so voi moi n >2;n ko chia het cho 3
=>n^2-1 và n^2+1 ko thể đồng thời là
số nguyên tố voi n>2;n ko chia hết cho 3
Bạn xem lời giải chi tiết ở đường link dưới nhé:
Câu hỏi của Bùi Nguyễn Việt Anh - Toán lớp 6 - Học toán với OnlineMath