Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S1 = 1-2+3-4+....+2017-2018
= (-1)+(-1)+....+(-1)
= (-1) x 1009
= -1009
a, \(S_1=3+4+6+8+...+2016+2017\)
\(S_1=3+\left(4+6+8+...+2016\right)+2017\)
Số số hạng của (4 + 6 + 8 + ... + 2016) là:
\(\left(2016-4\right)\div2+1=1007\)
Tổng của (4 + 6 + 8+ ... + 2016) là:
\(\frac{\left(4+2016\right).1007}{2}=1017070\)
\(\Rightarrow S_1=3+4+6+8+..+2016+2017=3+1017070+2017=1019090\)
b, \(S_2=2+3+5+7+...+2017+2018\)
\(S_2=2+\left(3+5+7+...+2017\right)+2018\)
Số số hạng của (3 + 5 + 7 + ... + 2017) là:
\(\frac{2017-3}{2}+1=1008\)
Tổng của (3 + 5 + 7 + ... + 2017) là:
\(\frac{\left(3+2017\right).1008}{2}=1018080\)
\(\Rightarrow S_2=2+3+5+7+...+2017+2018=2+1018080+2018=1020100\)
Lời giải:
Ta có:
\(S=1+2+2^2+2^3+....+2^{2018}\)
\(\Rightarrow 2S=2+2^2+2^3+....+2^{2018}+2^{2019}\)
Lấy hai vế trừ cho nhau:
\(\Rightarrow S=2S-S=2^{2019}-1< 2^{2019}\)
Mặt khác:
\(5.2^{2017}> 4.2^{2017}=2^2.2^{2017}=2^{2019}\)
Do đó \(S< 5.2^{2017}\)
Vì đề con viết thiếu nên cô đã sửa nhé.
Ta có \(S=1-2+2^2-2^3+...-2^{2017}\)
\(\Rightarrow4S=2^2.S=2^2\left(1-2+2^2-2^3+...-2^{2017}\right)\)
\(\Rightarrow4S=2^2-2^3+2^4-2^5+...-2^{2017}+2^{2018}-2^{2019}\)
\(\Rightarrow4S=S+1+2^{2018}-2^{2019}\)
\(\Rightarrow3S=1+2^{2018}-2^{2019}\)
\(\Rightarrow M=3S-2^{2018}=1-2^{2019}\)
Tham khảo:Tính S=2+2^2 +2^3 +2^4 .....+2^2016Tính S=2+2^2 +2^3 +2^4 .....+2^2016
nhân s vơi 2 có 2s= 2^2+2^3+....+2^2017
2s-s= 2^2017-2
=> s= 2^2017-2
S = 1 + 2 + 22 + 23 + ... + 22018
S = 20 + 21 + 22 + 23 +...+ 22018
2S = 2.20 + 2.21 + 2.22 + 2.23 + ... + 2.22018
2S = 21 + 22 + 23 + 24 + ... + 22018 + 22019
2S - S = 22019 - 20
S = 22019 - 1
Vậy : S = 22019 - 1