K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
6 tháng 1 2022

a.

- Với \(m=-1\Rightarrow x=\dfrac{6}{7}\) (ktm)

- Với \(m\ne-1\) 

\(\Delta=\left(8m+1\right)^2-24m\left(m+1\right)=40m^2-8m+1>0;\forall m\) \(\Rightarrow\) pt luôn có 2 nghiệm pb

Để pt có 2 nghiệm thỏa mãn: \(x_1< x_2\le1\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x_1-1\right)\left(x_2-1\right)\ge0\\\dfrac{x_1+x_2}{2}< 1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2-\left(x_1+x_1\right)+1\ge0\\x_1+x_2< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{6m}{m+1}-\dfrac{8m+1}{m+1}+1\ge0\\\dfrac{8m+1}{m+1}< 2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-m}{m+1}\ge0\\\dfrac{6m-1}{m+1}< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}-1< m\le0\\-1< m< \dfrac{1}{6}\end{matrix}\right.\) \(\Rightarrow-1< m\le0\)

\(\Rightarrow\) Pt có nghiệm thuộc khoảng đã cho khi: \(\left[{}\begin{matrix}m>0\\m< -1\end{matrix}\right.\)

b.

Đặt \(f\left(x\right)=\left(m+1\right)x^2-\left(8m+1\right)x+6m\)

Pt đã cho có đúng 1 nghiệm thuộc (0;1) khi:

\(f\left(0\right).f\left(1\right)< 0\)

\(\Leftrightarrow6m\left(m+1-8m-1+6m\right)< 0\)

\(\Leftrightarrow-6m^2< 0\)

\(\Leftrightarrow m\ne0\)

a:

\(\text{Δ}=\left(m-1\right)^2-4\left(-2m-1\right)\)

\(=m^2-2m+1+8m+4=m^2+6m+5\)

Để (1) vô nghiệm thì (m+1)(m+5)<0

hay -5<m<-1

Để (1) có nghiệm thì (m+1)(m+5)>=0

=>m>=-1 hoặc m<=-5 

Để (1) có hai nghiệm phân biệt thì (m+1)(m+5)>0

=>m>-1 hoặc m<-5

b: Để (1) có hai nghiệm phân biệt cùng dương thì

\(\left\{{}\begin{matrix}\left[{}\begin{matrix}m>-1\\m< -5\end{matrix}\right.\\m>1\\m< -\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

NV
20 tháng 1 2022

c. Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m-1\\x_1x_2=-2m-1\end{matrix}\right.\)

\(x_1^2+x_2^2=3\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=3\)

\(\Leftrightarrow\left(m-1\right)^2+2\left(2m+1\right)=3\)

\(\Leftrightarrow m^2+2m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-2\left(loại\right)\end{matrix}\right.\)

16 tháng 2 2016

lớp mấy 

Đặt \(a=x^2\left(a>=0\right)\)

pt trở thành \(a^2+\left(1-2m\right)a+m^2-1=0\)

\(\text{Δ}=\left(1-2m\right)^2-4\left(m^2-1\right)\)

\(=4m^2-4m+1-4m^2+4=-4m+5\)

a: Để pt vô nghiệm thì -4m+5<0

hay m>5/4

b: Để phương trình có hai nghiệm phân biệt thì -4m+5>0

hay m<5/4

c: Để pt có 4 nghiệm phân biệt thì 

\(\left\{{}\begin{matrix}m< \dfrac{5}{4}\\-2m+1>0\\m^2-1>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{5}{4}\\m< \dfrac{1}{2}\\\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m< -1\\\dfrac{1}{2}< m< 1\end{matrix}\right.\)

18 tháng 2 2016

a) x4 + (1 - 2m)x2 + m2 - 1 = 0 (1)

Đặt t=x2 ta dc PT: t2+(1-2m)t+m2-1=0(2)

Để PT (1) thì PT(2) vô nghiệm:

Để PT(2) vô nghiệm thì: \(\Delta=\left(1-2m\right)^2-4.\left(m^2-1\right)<0\Leftrightarrow1-4m+4m^2-4m^2+4<0\)

<=>5-4m<0

<=>m>5/4

b)Để PT(1) có 2 nghiệm phân biệt thì PT(2) có duy nhất 1 nghiệm

Để PT(2) có duy nhất 1 nghiệm thì:

\(\Delta=5-4m=0\Leftrightarrow m=\frac{5}{4}\)

c)Để PT(1) có 4 nghiệm phân biệt thì PT(2) có 2 nghiệm phân biệt:

Để PT(2) có 2 nghiệm phân biệt thì:

\(\Delta=5-4m\ge0\Leftrightarrow m\le\frac{5}{4}\)

Mem đây ko rành lắm sai bỏ qua

3 tháng 12 2018

Đáp án: A

Bước 1 sai  vì giả sử phản chứng sai, phải giả sử phương trình vô nghiệm và a, c trái dấu.

31 tháng 8 2021

ta có \(\Delta\)'=(m-1)^2-3m+3=m^2-2m+1-3m+3=m^2-5m+4>/=0=>m</=1;m>/=4

pt cos 2 no âm pb=>\(\left\{{}\begin{matrix}S< 0\\P>0\\\Delta\ge0\end{matrix}\right.\)=>.....

Trường hợp 1: m=0

Phương trình sẽ là:

\(0x^2-2\cdot\left(0-1\right)x+0-3=0\)

=>2x-3=0

hay x=3/2

=>Phương trình có đúng một nghiệm dương, còn hai trường hợp còn lại thì ko đúng

Trường hợp 2: m<>0

a: 

Để phương trình có hai nghiệm trái dấu thì m(m-3)<0

hay 0<m<3

b:\(\Delta=\left(2m-2\right)^2-4m\left(m-3\right)\)

\(=4m^2-8m+4-4m^2+12m\)

=4m+4

Để phương trình có hai nghiệm dương phân biệt thì \(\left\{{}\begin{matrix}m>-1\\\dfrac{2\left(m-1\right)}{m}>0\\\dfrac{m-3}{m}>0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1< m< 0\\m>3\end{matrix}\right.\)