K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 5 2020

a/ Bạn tự giải

b/ \(\Delta=m^2-8\left(m-2\right)=m^2-8m+16=\left(m-4\right)^2\ge0;\forall m\)

\(\Rightarrow\) Pt luôn có nghiệm với mọi m

c/ Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=2m-4\end{matrix}\right.\)

Kết hợp Viet và điều kiện đề bài ta được:

\(\left\{{}\begin{matrix}2x_1+3x_2=5\\x_1+x_2=m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2x_1+3x_2=5\\3x_1+3x_2=3m\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=3m-5\\x_2=-2m+5\end{matrix}\right.\)

Thế vào \(x_1x_2=2m-4\) được:

\(\left(3m-5\right)\left(-2m+5\right)=2m-4\)

\(\Leftrightarrow6m^2-23m+21=0\Rightarrow\left[{}\begin{matrix}m=\frac{7}{3}\\m=\frac{3}{2}\end{matrix}\right.\)

22 tháng 12 2021

a: Để phương trình có hai nghiệm trái dấu thì m+2<0

hay m<-2

2 tháng 1 2021

Phương trình đã cho có hai nghiệm phân biệt khi

\(\Delta'=\left(m+1\right)^2-\left(m^2+2\right)=2m-1>0\Leftrightarrow m>\dfrac{1}{2}\)

Theo định lí Viet: \(x_1+x_2=2m+2;x_1x_2=m^2+2\)

Khi đó \(x_1^3+x_2^3=2x_1x_2\left(x_1+x_2\right)\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-5x_1x_2\left(x_1+x_2\right)=0\)

\(\Leftrightarrow\left(2m+2\right)^3-5\left(m^2+2\right)\left(2m+2\right)=0\)

\(\Leftrightarrow m^3-7m^2-2m+6=0\)

\(\Leftrightarrow\left(m+1\right)\left(m^2-8m+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=-1\left(l\right)\\m=4\pm\sqrt{10}\left(tm\right)\end{matrix}\right.\)

10 tháng 8 2018

a) Với m = 1 phương trình trở thành:

x 2  + 4x + 4 = 0 ⇔ (x + 2 ) 2  = 0 ⇔ x = -2

Vậy x = -2

b) Ta có: Δ' = m 2  - 5m + 4

Phương trình có hai nghiệm phân biệt

⇔ Δ' > 0 ⇔ m 2  - 5m + 4 > 0 Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

Do x1 < x2 < 1

Đề kiểm tra 45 phút Đại số 10 Chương 4 có đáp án (Đề 2)

AH
Akai Haruma
Giáo viên
28 tháng 8 2021

Lời giải:

Để pt có 2 nghiệm thì: 

\(\left\{\begin{matrix} m\neq 0\\ \Delta'=(m+1)^2-m(m+5)=1-3m\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ m\leq\frac{1}{3}\end{matrix}\right.(1)\)

Áp dụng định lý Viet:

\(\left\{\begin{matrix} x_1+x_2=\frac{2(m+1)}{m}\\ x_1x_2=\frac{m+5}{m}\end{matrix}\right.\)

Để $x_1< 0< x_2$

$\Leftrightarrow x_1x_2< 0$

$\Leftrightarrow \frac{m+5}{m}< 0$

$\Leftrightarrow -5< m< 0(2)$

$x_1< x_2< 2$

\(\Leftrightarrow \left\{\begin{matrix} (x_1-2)(x_2-2)>0\\ x_1+x_2<4\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_1x_2-2(x_1+x_2)+4>0\\ x_1+x_2<4\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} \frac{m+1}{m}>0\\ \frac{1-m}{m}< 0\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} m>1\\ m< -1\end{matrix}\right.(3)\)

Từ $(1);(2);(3)$ suy ra $-5< m< -1$

 

18 tháng 11 2019

Bảng biến thiên

Vậy m= -2 là giá trị cần tìm

Chọn B.

NV
3 tháng 3 2022

a. Với \(m=0\Rightarrow-x-1=0\Rightarrow x=-1\) pt có nghiệm (ktm)

Với \(m\ne0\) pt vô nghiệm khi:

\(\Delta=\left(m-1\right)^2-4m\left(m-1\right)< 0\)

\(\Leftrightarrow\left(m-1\right)\left(-3m-1\right)< 0\)

\(\Rightarrow\left[{}\begin{matrix}m>1\\m< -\dfrac{1}{3}\end{matrix}\right.\)

b. Phương trình có 2 nghiệm trái dấu khi \(ac< 0\)

\(\Leftrightarrow m\left(m-1\right)< 0\Rightarrow0< m< 1\)

c. Từ câu a ta suy ra pt có 2 nghiệm khi \(\left\{{}\begin{matrix}m\ne0\\-\dfrac{1}{3}\le m\le1\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-m}{m}\\x_1x_2=\dfrac{m-1}{m}\end{matrix}\right.\)

\(x_1^2+x_2^2-3>0\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-3>0\)

\(\Leftrightarrow\left(\dfrac{1-m}{m}\right)^2-2\left(\dfrac{m-1}{m}\right)-3>0\)

Đặt \(\dfrac{m-1}{m}=t\Rightarrow t^2-2t-3>0\Rightarrow\left[{}\begin{matrix}t>3\\t< -1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\dfrac{m-1}{m}>3\\\dfrac{m-1}{m}< -1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\dfrac{-2m-1}{m}>0\\\dfrac{2m-1}{m}< 0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{2}< m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)

Kết hợp điều kiện có nghiệm \(\Rightarrow\left[{}\begin{matrix}-\dfrac{1}{3}\le m< 0\\0< m< \dfrac{1}{2}\end{matrix}\right.\)

a: Δ=(2m-1)^2-4(m-1)

=4m^2-4m+1-4m+4

=4m^2-8m+5

=4m^2-8m+4+1=(2m-2)^2+1>=1>0 với mọi m

=>PT luôn có 2 nghiệm với mọi m

b: x1^3+x2^3=2m^2-m

=>(x1+x2)^3-3x1x2(x1+x2)=2m^2-m

=>(2m-1)^3-3(m-1)(2m-1)=2m^2-m

=>8m^3-12m^2+6m-1-3(2m^2-3m+1)-2m^2+m=0

=>8m^3-14m^2+7m-1-6m^2+9m-3=0

=>8m^3-20m^2+16m-4=0

=>m=1/2 hoặc m=1