\(x^4-\left(m-1\right)x^2+m=0\)

a) chứng minh rang phuong trinh lu...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 10 2019

PT

\(\Leftrightarrow\left(x+1\right)\left(x-1\right)\left(x+3\right)\left(x+5\right)=m\)

\(\Leftrightarrow\left(x^2+4x+3\right)\left(x^2+4x-5\right)=m\)

\(\Leftrightarrow\left(x^2+4x-1+4\right)\left(x^2+4x-1-4\right)=m\)

\(\Leftrightarrow\left(x^2+4x-1\right)^2-16=m\)

\(\Leftrightarrow\left(x^2+4x-1\right)^2=m+16\) \(\left(DK:m\ge-16\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+4x-1=\sqrt{m+16}\left(1\right)\\x^2+4x-1=-\sqrt{m+16}\left(2\right)\end{cases}}\)

PT(1)

\(\Leftrightarrow x^2+4x-1-\sqrt{m+16}=0\)

Ta co:

\(\Delta^`=2^2-1.\left(-1-\sqrt{m+16}\right)=5+\sqrt{m+16}>0\)

\(\Rightarrow\hept{\begin{cases}x_1=-2+\sqrt{5+\sqrt{m+16}}\\x_2=-2-\sqrt{5+\sqrt{m+16}}\end{cases}}\)

PT(2)

\(\Leftrightarrow x^2+4x-1+\sqrt{m+16}=0\)

Ta lai co:

\(\Delta^`=2^2-1.\left(-1+\sqrt{m+16}\right)=5-\sqrt{m+16}\)

De PT co 4 nghiem phan biet thi PT(1) va PT(2) co 2 nghiem phan bet

Suy ra PT(2) co 2 nghiem phan biet khi 

\(5-\sqrt{m+16}>0\)

\(\Leftrightarrow m< 9\)

\(\Rightarrow\hept{\begin{cases}x_3=-2+\sqrt{5-\sqrt{m+16}}\\x_4=-2-\sqrt{5-\sqrt{m+16}}\end{cases}}\)

Ta lai co:

\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_4}+\frac{1}{x_5}=\frac{x_1+x_2}{x_1x_2}+\frac{x_4+x_5}{x_4x_5}=\frac{4}{1+\sqrt{m+16}}+\frac{4}{1-\sqrt{m+16}}\text{ }=-\frac{8}{15+m}\)\(\left(DK:m\ne-15\right)\)

Ma \(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)

\(\Leftrightarrow-\frac{8}{m+15}=-1\)

\(\Leftrightarrow m=-7\)

Vay de PT \(\left(x^2-1\right)\left(x+3\right)\left(x+5\right)=m\)co 4 gnhiem phan biet thoa man 

\(\frac{1}{x_1}+\frac{1}{x_2}+\frac{1}{x_3}+\frac{1}{x_4}=-1\)thi m=-7

10 tháng 2 2019

nhân tung ra rồi dùng  viet

7 tháng 2 2021

a) Phương trình \(x^2-2mx-2m-1=0\)có các hệ số a = 1; b = - 2m; c = - 2m - 1

\(\Delta=\left(-2m\right)^2-4\left(-2m-1\right)=4m^2+8m+4=4\left(m+1\right)^2\ge0\forall m\)

Vậy phương trình luôn có 2 nghiệm x1, x2 với mọi m (đpcm)

b) Theo Viète, ta có: \(x_1+x_2=2m;x_1x_2=-2m-1\)

Hệ thức \(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\Leftrightarrow2\left(x_1^2+x_2^2\right)=-5x_1x_2\)

\(\Leftrightarrow2\left[\left(x_1+x_2\right)^2-2x_1x_2\right]=-5x_1x_2\)hay \(2\left(4m^2+4m+2\right)=10m+5\Leftrightarrow8m^2-2m-1=0\)\(\Leftrightarrow\orbr{\begin{cases}m=\frac{1}{2}\\m=-\frac{1}{4}\end{cases}}\)

Vậy \(m=\frac{1}{2}\)hoặc \(m=-\frac{1}{4}\)thì phương trình có 2 nghiệm x1, x2 thỏa mãn\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{-5}{2}\)

14 tháng 7 2015

Đặt t = x2 (t \(\ge\) 0). Khi đó, phương trình đã cho trở thành: t2 - 2(m+ 2).t + m4 + 3 = 0   (*)

\(\Delta\)' = (m2 +2)2 - (m4 + 3) = m4 + 4m+ 4 - m4 - 3 = 4m2 + 1 > 0 

=> (*) luôn có 2 nghiệm phân biệt. Gọi hai nghiệm đó là t1; t2

Theo hệ thức Vi - et ta có: t1 + t2 = 2(m2 + 2)  > 0 

                                       t1. t2 = m4 + 3 > 0 

=> t1 > 0 và t2 > 0 (thỏa mãn điều kiện của t)

vậy (*) luôn có 2 nghiệm dương phân biệt => pt đã cho luôn có 4 nghiệm phân biệt   x1; x; x3; x4

trong đó x1; x thỏa mãn x12 = x22 = t1;  x32 = x24 = t2 ; x1; x2 đối nhau ; x3; x4 đối nhau

=>  \(x_1^2+x^2_2+x^2_3+x^2_4+x_1\cdot x_2\cdot x_3\cdot x_4=2t_1+2t_2+\left(-x_1^2\right).\left(-x_2^2\right)=2.\left(t_1+t_2\right)+t_1.t_2\)

= 2.2.(m2 + 2) + m4 + 3 = m4 + 4m+ 11