Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, m=2
\(x^2-4x+3=0\)
=>\(\orbr{\begin{cases}x=1\\x=3\end{cases}}\)
b, Phương trình có nghiệm
=> \(\Delta'\ge0\)
=> \(m^2-m^2+m-1\ge0\)=>\(m\ge1\)
Theo Vi-ét ta có
\(\hept{\begin{cases}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{cases}}\)
Vì \(x_2\)là nghiệm của phương trình nên \(x^2_2-2mx_2+m^2-m+1=0\)=>\(2mx_2=x_2^2+m^2-m+1\)
Khi đó
\(\left(x_1^2+x_2^2\right)-3x_1x_2-3+m^2-m+1=0\)
=>\(\left(x_1+x_2\right)^2-5x_1x_2+m^2-m-2=0\)
=> \(4m^2-5\left(m^2-m+1\right)+m^2-m-2=0\)
=> \(m=\frac{7}{4}\)( thỏa mãn \(m\ge1\)
Vậy \(m=\frac{7}{4}\)
a/ Bạn tự giải
b/ \(\Delta'=m^2-\left(m^2-m+1\right)=m-1\ge0\Rightarrow m\ge1\)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+1\end{matrix}\right.\)
Mặt khác do \(x_1\) là nghiệm nên:
\(x_1^2-2mx_1+m^2-m+1=0\Leftrightarrow x_1^2=2mx_1-m^2+m-1=0\)
Thay vào đề bài:
\(x_1^2+2mx_2-3x_1x_2-3=0\)
\(\Leftrightarrow2mx_1-m^2+m-1+2mx_2-3x_1x_2-3=0\)
\(\Leftrightarrow2m\left(x_1+x_2\right)-3x_1x_2-m^2+m-4=0\)
\(\Leftrightarrow4m^2-3\left(m^2-m+1\right)-m^2+m-4=0\)
\(\Leftrightarrow4m-7=0\)
\(\Rightarrow m=\frac{7}{4}\) (thỏa mãn)
Để pt có 2 nghiệm \(x_1,x_2\) thì \(\Delta'=4\left(m-1\right)^2-3\left(m^2-4m+1\right)=m^2+4m+1\ge0\)
\(\Leftrightarrow\)\(\left(m^2+4m+4\right)-3\ge0\)\(\Leftrightarrow\)\(\left(m+2\right)^2-3\ge0\)
\(\Leftrightarrow\)\(\left(m+2-\sqrt{3}\right)\left(m+2+\sqrt{3}\right)\ge0\)\(\Leftrightarrow\)\(\orbr{\begin{cases}m\ge\sqrt{3}-2\\m\le-\sqrt{3}-2\end{cases}}\)
Ta có : \(\left|x_1-x_2\right|=2\)
\(\Leftrightarrow\)\(\left(x_1-x_2\right)^2=4\)
\(\Leftrightarrow\)\(x_1^2+x_2^2-2x_1x_2=4\)
\(\Leftrightarrow\)\(\left(x_1+x_2\right)^2-4x_1x_2=4\) \(\left(1\right)\)
Theo định lý Vi-et ta có \(\hept{\begin{cases}x_1+x_2=\frac{4\left(1-m\right)}{3}\\x_1x_2=\frac{m^2-4m+1}{3}\end{cases}}\)
\(\left(1\right)\)\(\Leftrightarrow\)\(\left(\frac{4-4m}{3}\right)^2-4\left(\frac{m^2-4m+1}{3}\right)=4\)
\(\Leftrightarrow\)\(\frac{16-32m+16m^2}{9}-\frac{4m^2-16m+4}{3}-4=0\)
\(\Leftrightarrow\)\(\frac{16m^2-32m+16-12m^2+48m-12-36}{9}=0\)
\(\Leftrightarrow\)\(4m^2+16m-32=0\)
\(\Leftrightarrow\)\(\left(m^2+4m+4\right)-12=0\)
\(\Leftrightarrow\)\(\left(m+2\right)^2=12\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}m=2\sqrt{3}-2\left(tm\right)\\m=-2\sqrt{3}-2\left(tm\right)\end{cases}}\)
Vậy để pt có hai nghiệm \(x_1,x_2\) thoả mãn \(\left|x_1-x_2\right|=2\) thì \(\orbr{\begin{cases}m=2\sqrt{3}-2\\m=-2\sqrt{3}-2\end{cases}}\)
chả biết đúng ko nhưng xem thử nha -_-
\(a)\) Để pt có hai nghiệm phân biệt \(x_1,x_2\) thì \(\Delta'=\left(1-m\right)^2-m^2+3m=1-2m+m^2-m^2+3m=m+1>0\)\(\Leftrightarrow\)\(m>-1\)
Vậy để pt có hai nghiệm phân biệt \(x_1,x_2\) thì \(m>-1\)
\(b)\) Ta có : \(T=x_1^2+x_2^2-\left(m-1\right)\left(x_1+x_2\right)+m^2-3m\)
\(T=\left(x_1+x_2\right)^2-2x_1x_2+\left(1-m\right)\left(x_1+x_2\right)+m^2-3m\)
Theo định lý Vi-et ta có : \(\hept{\begin{cases}x_1+x_2=2\left(1-m\right)\\x_1x_2=m^2-3m\end{cases}}\)
\(\Rightarrow\)\(T=4\left(1-m\right)^2-2\left(m^2-3m\right)-2\left(1-m\right)\left(1-m\right)+m^2-3m\)
\(T=4m^2-8m+4-2m^2+6m-2m^2+4m-2+m^2-3m\)
\(T=m^2-m+2=\left(m^2-m+\frac{1}{4}\right)+\frac{7}{4}=\left(m-\frac{1}{2}\right)^2+\frac{7}{4}\ge\frac{7}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(m=\frac{1}{2}\) ( thoả mãn )
Vậy GTNN của \(T=\frac{7}{4}\) khi \(m=\frac{1}{2}\)
\(\Delta'=b'^2-ac=-6m+7=>\)\(m\ge\frac{7}{6}\)
Theo Vi-ét : \(\hept{\begin{cases}x_1+x_2=2\left(m-2\right)\\x_1.x_2=m^2+2m-3\end{cases}}\)Mà \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{x_1+x_2}{5}=>\)\(\frac{x_1+x_2}{x_1.x_2}=\frac{x_1+x_2}{5}\)
=> \(x_1.x_2=5\)<=> \(m^2+2m-3=5\)<=> \(m^2+2m-8=0\)
Giải pt trên ta đc : \(\orbr{\begin{cases}m=2\\m=-4\end{cases}}\)Mà \(m\ge\frac{7}{6}\)=> \(m=2\)
x2_2eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee
toi xin loi ban