Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta'=\left(a-1\right)^2-\left(a^2+a-2\right)=-3a+3\)
Để phương trình có hai nghiệm \(x_1;x_2\) thì \(\Delta'\ge0\Leftrightarrow-3a+3\ge0\Leftrightarrow a\le1\)
Áp dụng hệ thức Viet ta có: \(\hept{\begin{cases}x_1+x_2=2\left(a-1\right)\\x_1.x_2=a^2+a-2\end{cases}}\)
Vậy thì \(P=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=4\left(a-1\right)^2-2\left(a^2+a-2\right)\)
\(=2a^2-10a+8=2\left(a^2-5a+\frac{25}{4}\right)-\frac{9}{2}=2\left(a-\frac{5}{2}\right)^2-\frac{9}{2}\ge-\frac{9}{2}\)
Vậy \(\text{min}P=-\frac{9}{2}\Leftrightarrow a=\frac{5}{2}.\)
Bài giải :
Δ'=(a−1)2−(a2+a−2)=−3a+3
Để phương trình có hai nghiệm x1;x2 thì Δ'≥0⇔−3a+3≥0⇔a≤1
Áp dụng hệ thức Viet ta có: {
x1+x2=2(a−1) |
x1.x2=a2+a−2 |
Vậy thì P=x12+x22=(x1+x2)2−2x1.x2=4(a−1)2−2(a2+a−2)
=2a2−10a+8=2(a2−5a+254 )−92 =2(a−52 )2−92
Với a≤1⇒P≥0
Vậy minP = 0 khi a = 1.
Để pt có nghiệm thì \(\Delta=1-4m\ge0\Rightarrow m\le\frac{1}{4}\)
Ta có:\(x_1=\frac{-1+\sqrt{1-4m}}{2};x_2=\frac{-1-\sqrt{1-4m}}{2}\)
\(\Rightarrow\hept{\begin{cases}x_1+x_2=-1\\x_1x_2=m\end{cases}}\)
\(\Rightarrow x_1^2\left(x_1+1\right)+x^2_2\left(x_2+1\right)=m\le\frac{1}{4}\)
đây lại là ba cái đenta ;P;rồi thì S đó bạn !cả 2 nghiệm cùng âm dương jj đó tra mạng ra ngay mà
Xét \(\Delta=1-4m\ge0\Rightarrow m\le\frac{1}{4}\)
Áp dụng Viete ta có:\(x_1+x_2=-1;x_1x_2=m\)
\(Q=x_1^2\left(x_1+1\right)+x_2^2\left(x_2+1\right)\)
\(=x_1^3+x_1^2+x_2^3+x_2^2\)
\(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+\left(x_1+x_2\right)^2-2x_1x_2\)
\(=-1^3-3\cdot m\cdot\left(-1\right)+\left(-1\right)^2-2m\)
\(=-1+3m+1-2m\)
\(=m\le\frac{1}{4}\)
Đẳng thức xảy ra khi m=1/4
\(\Delta'=\left(m+1\right)^2-\left(2m-3\right)=m^2+4>0,\forall m\inℝ\)
nên phương trình luôn có hai nghiệm phân biệt \(x_1+x_2\).
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=2m+2\\x_1x_2=2m-3\end{cases}}\)
\(P=\left|\frac{x_1+x_2}{x_1-x_2}\right|=\frac{\left|x_1+x_2\right|}{\left|x_1-x_2\right|}=\frac{\left|x_1+x_2\right|}{\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}\)
\(=\frac{\left|2m+2\right|}{\sqrt{\left(2m+2\right)^2-4\left(2m-3\right)}}=\frac{\left|2m+2\right|}{\sqrt{4m^2+16}}=\frac{\left|m+1\right|}{\sqrt{m^2+4}}\ge0\)
Dấu \(=\)xảy ra khi \(m=-1\).
\(\Delta'=\left(m+4\right)^2-\left(m^2-8\right)=8m+24\ge0\Rightarrow m\ge-3\)
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+4\right)\\x_1x_2=m^2-8\end{matrix}\right.\)
a/ \(A=x_1^2+x_2^2-3x_1x_2=\left(x_1+x_2\right)^2-5x_1x_2\)
\(=4\left(m+4\right)^2-5\left(m^2-8\right)\)
\(=-m^2+32m+104=360-\left(m-16\right)^2\le360\)
\(A_{max}=360\) khi \(m=16\)
\(B=\left(x_1+x_2\right)^2-3x_1x_2\)
\(=4\left(m+4\right)^2-3\left(m^2-8\right)\)
\(=m^2+32m+88=\left(m+3\right)\left(m+29\right)+1\ge1\)
\(\Rightarrow B_{min}=1\) khi \(m=-3\)
b/ Từ Viet: \(\left\{{}\begin{matrix}\frac{x_1+x_2-8}{2}=m\\x_1x_2+8=m^2\end{matrix}\right.\)
\(\Rightarrow\left(\frac{x_1+x_2-8}{2}\right)^2=x_1x_2+8\)
Đây là hệ thức liên hệ 2 nghiệm ko phụ thuộc m (bạn có thể rút gọn thêm)
Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=2m+2\\x_1x_2=\frac{c}{a}=m^2+3\end{cases}}\)
\(A=m^2+3+2m+2=m^2+2m+5=\left(m+1\right)^2+4\ge4\)
Dấu ''='' xảy ra khi m = -1
Vậy GTNN A là 4 khi m =-1
Để phương trình có nghiệm x1;x2 thì :
\(\Delta'=\left(m+4\right)^2-\left(m^2-8\right)\)
\(=\left(m^2+8m+16\right)-m^2+8\)
\(=8m+24\ge0\Leftrightarrow m\ge-3\)
Theo hệ thức Viet,ta có :
\(\left\{{}\begin{matrix}x1+x2=2\left(m+4\right)\\x1.x2=m^2-8\end{matrix}\right.\)
a) \(A=x1^2+x2^2-x1-x2=\left(x1+x2\right)^2-\left(x1+x2\right)-2x1x2=4\left(m+4\right)^2-2\left(m+4\right)-2\left(m^2-8\right)\)
\(A=2m^2+30m+66=0\)
\(A=\left(4m+3\right)^2-\frac{519}{8}\ge-\frac{519}{8}\)
b) \(B=2\left(m+4\right)-3\left(m^2-8\right)\)
\(B=-3m^2+2m+32\)
\(B=\frac{97}{3}-\left(3x-1\right)^2\le\frac{97}{3}\Leftrightarrow x=\frac{1}{3}\)
c) \(C=x1^2+x2^2-x1x2=\left(x1+x2\right)^2-3x1x2\)
\(C=4\left(m+4\right)^2-3\left(m^2-8\right)\)
\(C=-3m^2+4m+28\)
\(C=\frac{88}{3}-\left(3x-2\right)^2\le\frac{88}{3}\Leftrightarrow x=\frac{2}{3}\)
\(\Delta'=\left[-\left(m+4\right)\right]^2-1\left(m^2-8\right)=m^2+8m+16-m^2+8=8m+24\)
Để pt có 2 nghiệm thì \(\Delta'\ge0\Leftrightarrow8m+24\ge0\Leftrightarrow m\ge-3\)
Áp dụng định lý Vi-ét ta có:\(\left\{{}\begin{matrix}x_1+x_2=2m+8\\x_1x_2=m^2-8\end{matrix}\right.\)
\(A=x^2_1+x^2_2-x_1-x_2\\ =\left(x_1+x_2\right)^2-2x_1x_2-\left(x_1+x_2\right)\\ =\left(2m+8\right)^2-2\left(m^2-8\right)-\left(2m+8\right)\\ =4m^2+32m+64-2m^2+16-2m-16\\ =2m^2+30m+64\)
Amin=\(-\dfrac{97}{2}\)\(\Leftrightarrow m=-\dfrac{15}{2}\)
\(B=x^2_1+x^2_2-x_1x_2\\ =\left(x_1+x_2\right)^2-3x_1x_2\\ =\left(2m+8\right)^2-3\left(m^2-8\right)\\ =4m^2+32m+64-3m^2+24\\ =m^2+32m+88\)
Bmin=-168\(\Leftrightarrow\)m=-16