Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 - 2x + 1 = 0 <=> (x -1)2 = 0 <=>x - 1 = 0 <=> x = 1 => pt có nghiệm kép x1 = x2 = 1
S= 1+1 = 2
bài làm
x2 - 2x + 1 = 0
<=> (x -1)2 = 0
<=>x - 1 = 0
<=> x = 1
=> pt có nghiệm kép x1 = x2 = 1
S= 1+1 = 2
hok tốt
a) Áp dụng đl Vi-ét vào pt ta có:
x1+x2=-1.5
x1 . x2= -13
C=x1(x2+1)+x2(x1+1)
= 2x1x2 + x1+x2
= 2.(-13) -1.5
= -26 -1.5
= -27.5
a, Theo Vi et : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-\frac{3}{2}\\x_1x_2=\frac{c}{a}=-13\end{cases}}\)
Ta có : \(C=x_1\left(x_2+1\right)+x_2\left(x_1+1\right)=x_1x_2+x_1+x_1x_2+x_2\)
\(=-13-\frac{3}{2}-13=-26-\frac{3}{2}=-\frac{55}{2}\)
a) 2x2 – 17x + 1 = 0 có a = 2, b = -17, c = 1
∆ = (-17)2 – 4 . 2 . 1 = 289 – 8 = 281
x1 + x2 = = ; x1x2 =
b) 5x2 – x + 35 = 0 có a = 5, b = -1, c = -35
∆ = (-1)2 – 4 . 5 . (-35) = 1 + 700 = 701
x1 + x2 = = ; x1x2 = = -7
c) 8x2 – x + 1 = 0 có a = 8, b = -1, c = 1
∆ = (-1)2 – 4 . 8 . 1 = 1 - 32 = -31 < 0
Phương trình vô nghiệm nên không thể điền vào ô trống được.
d) 25x2 + 10x + 1 = 0 có a = 25, b = 10, c = 1
∆ = 102 – 4 . 25 . 1 = 100 - 100 = 0
x1 + x2 = = ; x1x2 =
a) 2x2 – 17x + 1 = 0 có a = 2, b = -17, c = 1
∆ = (-17)2 – 4 . 2 . 1 = 289 – 8 = 281
x1 + x2 = = ; x1x2 =
b) 5x2 – x + 35 = 0 có a = 5, b = -1, c = -35
∆ = (-1)2 – 4 . 5 . (-35) = 1 + 700 = 701
x1 + x2 = = ; x1x2 = = -7
c) 8x2 – x + 1 = 0 có a = 8, b = -1, c = 1
∆ = (-1)2 – 4 . 8 . 1 = 1 - 32 = -31 < 0
Phương trình vô nghiệm nên không thể điền vào ô trống được.
d) 25x2 + 10x + 1 = 0 có a = 25, b = 10, c = 1
∆ = 102 – 4 . 25 . 1 = 100 - 100 = 0
x1 + x2 = = ; x1x2 =
pt có 2 nghiệm pb dương
<=> {delta=25-4m>0
{ x1+x2=5>0
{x1..x2=m>0
<=> 0<m <25/4
( x1canx2+x2canx1)2=36
x1^2..x2 +x1 ..x2^2 +2 (x1×x2)can (x1×x2)=36
sau đó sử ddụng viet và thay vào
mn cho mk hỏi
nếu đđặt câu hỏi trên OLM này thì khi có người giải đáp cho mk thì có thông báo k z
Lập \(\Delta=25-4m\)
Phương trình có 2 nghiệm \(x_1;x_2\)khi \(\Delta\ge0\)hay \(m\le\frac{25}{4}\)
Áp dụng hệ thức Vi-et ta có \(\hept{\begin{cases}x_1+x_2=5\\x_1x_2=m\end{cases}}\)
2 nghiệm \(x_1;x_2\)dương khi \(\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}}\)hay m>0
Điều kiện để pt có 2 nghiệm dương x1;x2 là \(0< m< \frac{25}{4}\)(*)
Ta có \(\left(\sqrt{x_1}+\sqrt{x_2}\right)^2=x_1+x_2+2\sqrt{x_1x_2}=5+2\sqrt{m}\)
=> \(\sqrt{x_1}+\sqrt{x_2}=\sqrt{5+2\sqrt{m}}\)
Ta có \(x_1\sqrt{x_2}+x_2\sqrt{x_1}=6\Leftrightarrow\sqrt{x_1x_2}\left(\sqrt{x_1}+\sqrt{x_2}\right)=6\)
hay \(\sqrt{m}\sqrt{5+2\sqrt{m}}=6\Leftrightarrow2m\sqrt{m}+5m-36=0\left(1\right)\)
Đặt \(t=\sqrt{m}\ge0\)khi đó (1) trở thành
\(\Leftrightarrow2t^2+5t^2-36=0\)
\(\Leftrightarrow\left(t-2\right)\left(2t^2+9t+18\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t-2=0\\2t^2+9t+18=0\end{cases}\Rightarrow t=2\Rightarrow m=4\left(tmđk\right)}\)
(vì 2t2+9t+18 vô nghiệm)
Vậy m=4 thì pt đã cho có 2 nghiệm dương x1;x2 thỏa mãn \(x_1\sqrt{x_2}+x_2\sqrt{x_1}=6\)
\(x^2-2\left(m+1\right)x+3\left(m+1\right)-3=0\)
\(x^2-2nx+3n+3=\left(x-n\right)^2-\left(n^2-3n+3\right)=0\)\(\left(x-n\right)^2=\left(n-\frac{3}{2}\right)^2+\frac{3}{4}=\frac{\left(2n-3\right)^2+3}{4}>0\forall n\) vậy luôn tồn tại hai nghiệm
\(\orbr{\begin{cases}x_1=\frac{n-\sqrt{\left(2n-3\right)^2+3}}{2}\\x_2=\frac{n+\sqrt{\left(2n-3\right)^2+3}}{2}\end{cases}}\)
a) \(\frac{x_1}{x_2}=\frac{4x_1-x_2}{x_1}\Leftrightarrow\frac{x_1^2-4x_1x_2+x_2^2}{x_1x_2}=0\)
\(x_1x_2=n^2-\frac{\left(2n-3\right)^2+3}{4}=\frac{4n^2-4n^2+12n-9-3}{4}=3n-3\)
với n=1 hay m=0 : Biểu thức cần C/m không tồn tại => xem lại đề
x1;x2 là nghiệm của pt
=> \(x^2_1-3\sqrt{2}x_1-\sqrt{2}=0\Rightarrow x^2_1=3\sqrt{2}x_1+\sqrt{2}\)
\(x^2_2-3\sqrt{2}x_2-\sqrt{2}=0\Rightarrow x^2_2=3\sqrt{2}x_2+\sqrt{2}\)
=> \(A=\frac{2}{3\sqrt{2}x_1+3\sqrt{2}x_2+\sqrt{2}-3\sqrt{2}}+\frac{3\sqrt{2}x_2+3\sqrt{2}x_1+\sqrt{2}-3\sqrt{2}}{2}\)
\(A=\frac{2}{3\sqrt{2}\left(x_1+x_2\right)-2\sqrt{2}}+\frac{3\sqrt{2}\left(x_2+x_1\right)-2\sqrt{2}}{2}\)
Theo VI ét => \(x_1+x_2=3\sqrt{2}\). Thay vào A
=> quy đồng.....
Ptr có:`\Delta=(-3)^2-4.2.(-3)=33 > 0`
`=>` Ptr có `2` nghiệm pb
`=>` Áp dụng Viét có:`{(x_1+x_2=[-b]/a=3/2),(x_1.x_2=c/a=[-3]/2):}`
Ta có:`B=x_1 ^2 x_2+x_2 ^2 x_1`
`<=>B=x_1.x_2(x_1+x_2)`
`<=>B=[-3]/2 . 3/2=[-9]/4`
\(2x^2-3x-3=0\)
\(B=x_1^2x_2+x_2^2x_1=x_1x_2\left(x_1+x_2\right)\)
Theo hệ thức Vi -ét ta có :
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{3}{2}\\x_1.x_2=\dfrac{-3}{2}\end{matrix}\right.\)
= \(\dfrac{-3}{2}.\dfrac{3}{2}=\dfrac{-9}{4}\)
Vậy \(B=x_1^2x_2+x_2^2x_1=\dfrac{-9}{4}\)