K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2015

a/

PT có nghiệm \(x=\sqrt{2}\Rightarrow\left(m-1\right).2-2m.\sqrt{2}+m-2=0\)

\(\Leftrightarrow\left(3-2\sqrt{2}\right)m=4\Leftrightarrow m=\frac{4}{3-2\sqrt{2}}\)

b/

\(\left(m-1\right)x^2-2mx+m-2=0\text{ (1)}\)

\(+m-1=0\Leftrightarrow m=1\text{ thì }\left(1\right)\text{ trở thành }-2x+1-2=0\Leftrightarrow x=-\frac{1}{2}\)(loại do chỉ có 1 nghiệm)

\(+m-1\ne0\Leftrightarrow m\ne1\)

\(\left(1\right)\text{ là một phương trình bậc 2 ẩn }x.\)

\(\left(1\right)\text{ có 2 nghiệm phân biệt }\Leftrightarrow\Delta'=m^2-\left(m-1\right)\left(m-2\right)>0\)

\(\Leftrightarrow3m-2>0\Leftrightarrow m>\frac{2}{3}\)

9 tháng 8 2017

a. Để phương trình (1) có 1 nghiệm bằng 1 \(\Rightarrow x=1\)thỏa mãn phương trình 

hay \(1-2m+4m-3=0\Rightarrow2m=2\Rightarrow m=1\)

Vậy \(m=1\)thì (1) có 1 nghiệm bằng 1

b. Để (1) có 2 nghiệm \(x_1;x_2\)phân biệt thì \(\Delta>0\Rightarrow=4m^2-4\left(4m-3\right)>0\Rightarrow4m^2-16m+12>0\)

\(\Rightarrow\orbr{\begin{cases}x< 1\\x>3\end{cases}}\)

Theo hệ thức Viet ta có \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=4m-3\end{cases}}\)

Để \(x_1^2+x_2^2=6\Rightarrow\left(x_1+x_2\right)^2-2x_1.x_2=6\Rightarrow4m^2-2\left(4m-3\right)=6\)

\(\Rightarrow4m^2-8m+6=6\Rightarrow4m^2-8m=0\Rightarrow4m\left(m-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}m=0\left(tm\right)\\m=2\left(l\right)\end{cases}}\)

Vậy với \(m=0\)thỏa mãn yêu cầu bài toán 

NV
11 tháng 5 2020

\(\Delta'=m^2-2m^2+1=1-m^2>0\Rightarrow-1< m< 1\) (1)

Để pt có 2 nghiệm đều dương:

\(\left\{{}\begin{matrix}x_1+x_2=2m>0\\x_1x_2=2m^2-1>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m>0\\\left[{}\begin{matrix}m>\frac{\sqrt{2}}{2}\\m< -\frac{\sqrt{2}}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m>\frac{\sqrt{2}}{2}\)

Kết hợp (1) \(\Rightarrow\frac{\sqrt{2}}{2}< m< 1\)

\(x_1^3+x_2^3-\left(x_1^2+x_2^2\right)=-2\)

\(\Leftrightarrow\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)-\left(x_1+x_2\right)^2+2x_1x_2+2=0\)

\(\Leftrightarrow8m^3-6m\left(2m^2-1\right)-4m^2+2\left(2m^2-1\right)=0\)

\(\Leftrightarrow2m^3-3m+1=0\)

\(\Leftrightarrow\left(m-1\right)\left(2m^2+2m-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}m=1\left(l\right)\\2m^2+2m-1=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=\frac{-1+\sqrt{3}}{2}\\m=\frac{-1-\sqrt{3}}{2}\left(l\right)\end{matrix}\right.\)

4 tháng 3 2016

a. Pt có 2 nghiệm phân biệt  =>>0 <=>b2-4ac>0 <=>(-6m+3)2-4.2.(-3m-1)>0<=>36m2-36m+9+24m+8>0 <=>36m2-12m+1+16>0

<=> (6m-1)2+16>0 với mọi m

Ta lại có 2 ngiệm âm => S=X1+X2<0 <=>-b/a<0 <=> (6m-3)/2<0 <=> 6m-3<0 <=> m<1/2

                                    P=X1.X2>0 <=> c/a >0 <=> (-3m+1)/2>0 <=> -3m+1>0 <=> m<1/3

Vậy Pt Pt có 2 nghiệm phân biệt đều âm khi m<1/2

b

4 tháng 3 2016

b.Ta có :X12+X22=(X1+X2)2-2X1X2=S2-2P=(-b/a)2-2c/a=(6m-3)2/4-2(-3m+1)/2. Ta quy đồng lên dc (36m2-36m+9+12m-4)/4=(36m2-24m+4+1)/4

=(6m-2)2/4+1/4 >=4 . Dấu "=" xảy ra khi 6m-2=0 <=> m=1/3

30 tháng 4 2019

bạn tìm đenta 

sau đó cho đenta >0 

theo hệ thức viets tính đc x1+x2, x1*x2

bình phương 2 vế của pt thỏa mãn thế x1, x2 tương ứng là tìm dc m

mik chỉ nêu ý chình thôi nha mik hơi bận

1 tháng 5 2019

mình cũng làm như vậy lúc biến đổi ra căn nhưng dưới căn không quy về hằng đẳng thức được 

bạn có nick face không ib gửi mình xem thử lời giải với ??

13 tháng 2 2020

a, \(\Delta=\left(-m\right)^2-4\left(-2\right)=m^2+8>0\forall m\in R\)

\(\Rightarrow\) Phương trình có 2 nghiệm phân biệt \(\forall m\)

b, Theo vi-lét ta có: \(x_1+x_2=m\) và \(x_1x_2=-2\)

Ta có: \(x^2_1+x^2_2-3x_1x_2=14\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-5x_1x_2=14\)

\(\Leftrightarrow m^2+10=14\)

\(\Leftrightarrow m^2=4\)

\(\Leftrightarrow m=\pm2\)

Vậy .............