Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(-\frac{5}{x+3}\)
a) A có nghĩa khi x+3 khác 0=> x khác -3
b) x =-2 khác -3 neen ta thay vào A được A=\(-\frac{5}{-2+3}=-\frac{5}{1}=-5\)
x) A thuộc Z khi x+3 =Ư(5)={-1,1,-5,5}
x+3=-1=>x=-4
x+3=1=>x=-2
x+3=-5=>x=-5
x+3=5=>x=2
KL:...
a)\(ĐK:x+3\ne0\Leftrightarrow x\ne-3\)
b) Khi x=2 ta có:
\(A=-\frac{5}{2+3}=-\frac{5}{5}=-1\)
c)Để A thuộc Z thì x+3\(\in\)Ư(5)
Mà Ư(5)={1;-1;5;-5}
=> x+3={1;-1;5;-5}
Ta có bảng sau:
x+3 | 1 | -1 | 5 | -5 |
x | -2 | -4 | 2 | -8 |
Vẫy x={-8;-4;-2;2}
ĐK: x khác -3
Ta có: \(A=\frac{x+5}{x+3}=1+\frac{2}{x+3}\)
a) Để A là phân số => 2/(x+3) không nguyên => x + 3 không phải là ước số của 2.
2 có các ước: +-1; +-2
* \(x+3\ne1\Rightarrow x\ne-2\)
*\(x+3\ne-1\Rightarrow x\ne-4\)
*\(x+3\ne2\Rightarrow x\ne-1\)
* \(x+3\ne-2\Rightarrow x\ne-5\)
b) Để A là số nguyên => 2/(x+3) nguyên=> (x+3) là ước của 2. Tương tự trên => x =-5; -4; -2; -1
\(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)
\(a)\)
\(\text{Để A có giá trị nguyên: }\)
\(\frac{9}{x-4}\in Z\)
\(x-4\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\rightarrow x\in\left\{1;3;\pm5;7;13\right\}\)
\(b)\)
\(\text{Để A có giá trị lớn nhất: }\)
\(\frac{9}{x-4}\)\(\text{lớn nhất}\)
\(x-4=1\)
\(x=5\)
\(c)\)
\(\text{Để A đạt giá trị nhỏ nhất:}\)
\(\frac{9}{x-4}\)\(\text{nhỏ nhất}\)
\(x-4=-1\)
\(x=3\)
Cho \(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\left(ĐK:x\in Z,x\ne4\right)\)
Để A nguyên \(\Rightarrow9⋮x-4\)hay \(x-4\inƯ\left(9\right)\)
Ta có \(x-4\inƯ\left(9\right)\in\left\{\pm1;\pm3;\pm9\right\}\)
\(\Rightarrow x\in\left\{5;3;7;1;13;-5\right\}\)
b, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{max}\)khi \(B_{max}\)
Vì \(9>0\)để B đặt GTLN \(\Rightarrow\hept{\begin{cases}x-4>0\\\left(x-4\right)_{min}\end{cases}}\)
Mà \(x\in N\)\(\Rightarrow x-4=1\)
\(\Rightarrow x=5\)
\(\Rightarrow B_{max}=\frac{9}{5-4}=9\)
\(\Rightarrow A_{max}=1+9=10\)khi \(x=5\)
c, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{min}\)khi \(B_{min}\)
Vì \(9>0\)để B đạt GTNN \(\Rightarrow\hept{\begin{cases}x-4< 0\\\left(x-4\right)_{max}\end{cases}}\)
Mà \(x\in N\)\(\Rightarrow x-4\in Z\)
\(\Rightarrow x-4=-1\)
\(\Rightarrow x=3\)
\(\Rightarrow B_{min}=\frac{9}{3-4}=-9\)
\(\Rightarrow A_{min}=1+\left(-9\right)=\left(-8\right)\)khi \(x=3\)
\(A=\frac{x-5}{x^2+2}\\ xthu\text{ộc}Zkhix-5⋮x^2+2\\ =>\left(x-5\right)\left(x+5\right)⋮x^2+2\\ =>x^2-25⋮x^2+2\\ =>x^2+2-27⋮x^2+2\)
27 chia hết cho x2+2
tự làm tiếp
a)
Phân số có nghĩa khi \(x+3\ne0\)
\(\Leftrightarrow x\ne3\)
Vậy phân số có nghĩa khi x khác 3
b)
Với x- - 2
Ta có
\(A=\frac{-5}{-2+3}=\frac{-5}{1}=-5\)
Vậy với x= - 2 thì A= - 5
c)
A là số nguyên
<=> \(x+3\inƯ_5\)
<=> \(x+3\in\left\{1;5;-1;-3\right\}\)
<=> \(x\in\left\{-2;2;-1;-6\right\}\)
Vậy để A là số nghuyên thì \(x\in\left\{-2;2;-1;-6\right\}\)
a)
A có nghĩa <=> \(x+5\ne0\Leftrightarrow x\ne-5\)
Vậy x khác - 5 để a có nghĩa
b)
\(A\in Z\Leftrightarrow x+5\inƯ_{10}\)
\(\Rightarrow x+5\in\left\{1;2;5;10;-1;-2;-5;-10\right\}\)
\(\Rightarrow x\in\left\{-4;-3;0;5;-6;-7;-10;-15\right\}\)
Vậy để A là số nguyên thì \(x\in\left\{-4;-3;0;5;-6;-7;-10;-15\right\}\)