Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, bạn tự vẽ nhé
b, Gọi ptđt (D1) có dạng y = ax + b
(D1) // (D) \(\hept{\begin{cases}a=\frac{1}{2}\\b\ne2\end{cases}}\)
=> (D1) : y = x/2 + b
Hoành độ giao điểm tm pt
\(\frac{x^2}{4}=\frac{x}{2}+b\Leftrightarrow x^2=2x+4b\Leftrightarrow x^2-2x-4b=0\)
\(\Delta'=1-\left(-4b\right)=1+4b\)
Để (D1) tiếp xúc (P) hay pt có nghiệm kép
\(1+4b=0\Leftrightarrow b=-\frac{1}{4}\)
suy ra \(\left(D1\right):y=\frac{x}{2}-\frac{1}{4}\)
toạ độ M là tương giao của cái nào bạn ?
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}\dfrac{1}{4}x^2+\dfrac{1}{2}x-2=0\\y=\dfrac{1}{4}x^2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+2x-8=0\\y=\dfrac{1}{4}x^2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\in\left\{-4;2\right\}\\y\in\left\{4;1\right\}\end{matrix}\right.\)
a/ Tọa độ giao điểm của (P) và (d) là:
\(\frac{x^2}{4}=-\frac{x}{2}+2\Rightarrow x^2=-2x+8\Rightarrow x^2+2x-8=0\Rightarrow\orbr{\begin{cases}x=-4\Rightarrow y=4\\x=2\Rightarrow y=1\end{cases}}\)
Vậy có 2 giao điểm \(\orbr{\begin{cases}A\left(-4;4\right)\\A\left(2;1\right)\end{cases}}\)