Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác OACM có
\(\widehat{OAC}+\widehat{OMC}=90^0+90^0=180^0\)
=>OACM là tứ giác nội tiếp
=>O,A,C,M cùng thuộc một đường tròn
b: Xét (O) có
CA,CM là tiếp tuyến
Do đó: CA=CM
=>C nằm trên đường trung trực của AM(1)
OA=OM
=>O nằm trên đường trung trực của AM(2)
Từ (1) và (2) suy ra OC là đường trung trực của AM
=>OC\(\perp\)AM
Xét (O) có
ΔAMB nội tiếp
AB là đường kính
Do đó: ΔAMB vuông tại M
=>AM\(\perp\)MB tại M
Ta có: AM\(\perp\)MB
AM\(\perp\)OC
Do đó: OC//MB
c: Xét (O) có
ΔAKB nội tiếp
AB là đường kính
Do đó: ΔAKB vuông tại K
=>KB\(\perp\)KA tại K
=>AK\(\perp\)BC tại K
Xét ΔABC vuông tại A có AK là đường cao
nên \(BK\cdot BC=BA^2=\left(2R\right)^2=4R^2\)
N A B H M C O K I
1) Xét tứ giác CIOH có \(\widehat{CIO}+\widehat{CHO}=180^o\)nên là tứ giác nội tiếp
suy ra 4 điểm C,H,O,I cùng thuộc 1 đường tròn
2) vì OI \(\perp\)AC nên OI là đường trung trực của AC
\(\Rightarrow\widehat{AOM}=\widehat{COM}\)
Xét \(\Delta AOM\)và \(\Delta COM\)có :
\(\widehat{AOM}=\widehat{COM}\)( cmt )
OM ( chung )
OA = OC
\(\Rightarrow\Delta AOM=\Delta COM\left(c.g.c\right)\)
\(\Rightarrow\widehat{OAM}=\widehat{OCM}=90^o\)
\(\Rightarrow OC\perp MC\)hay MC là tiếp tuyến của đường tròn O
3) Ta có : \(\hept{\begin{cases}\widehat{AOM}+\widehat{IAO}=90^o\\\widehat{IAO}+\widehat{HBC}=90^o\end{cases}}\Rightarrow\widehat{AOM}=\widehat{HBC}\)
Xét \(\Delta AOM\)và \(\Delta HCB\)có :
\(\widehat{AOM}=\widehat{HBC}\); \(\widehat{MAO}=\widehat{CHB}=90^o\)
\(\Rightarrow\Delta AOM~\Delta HBC\left(g.g\right)\)
4) Gọi N là giao điểm của BC và AM
Xét \(\Delta NAB\)có AO = OB ; OM // BN nên AM = MN
CH // AN \(\Rightarrow\frac{CK}{NM}=\frac{KH}{AM}\left(=\frac{BK}{BM}\right)\)
Mà AM = NM nên CK = KH
\(\Rightarrow\)K là trung điểm của CH
a: Xét tứ giác CAOD có
\(\widehat{CAO}+\widehat{CDO}=180^0\)
=>CAOD là tứ giác nội tiếp đường tròn đường kính CO
=>C,A,O,D cùng thuộc đường tròn đường kính CO
b: Xét (O) có
CA,CD là tiếp tuyến
=>CA=CD
mà OA=OD
nên OC là trung trực của AD
=>OC\(\perp\)AD(1)
Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
=>AD\(\perp\)DB(2)
Từ (1) và (2) suy ra OC//DB
c: Sửa đề: CMBO
Xét ΔCAO vuông tại A và ΔMOB vuông tại O có
AO=BO
\(\widehat{COA}=\widehat{MBO}\)(CO//BM)
Do đó: ΔCAO=ΔMOB
=>CO=MB
Xét tứ giác CMBO có
CO//BM
CO=BM
Do đó: CMBO là hình bình hành
Giải thích các bước giải:
a,
AB là đường kính của đường tròn (O) đã cho mà C là 1 điểm nằm trên đường tròn nên:
ˆACB=90∘⇔AC⊥CB⇒AC⊥DBACB^=90∘⇔AC⊥CB⇒AC⊥DB
Vậy AC vuông góc với BD
b,
MA và MC là 2 tiếp tuyến kẻ từ M đến đường tròn nên MA=MCMA=MC hay M nằm trên trung trực của AC
OA=OC=ROA=OC=R nên O cũng nằm trên trung trực của AC
Do đó, OM là trung trực của AC hay OM⊥ACOM⊥AC mà AC⊥CBAC⊥CB nên OM//BCOM//BC
Tam giác ACD vuông tại C có AM=MC nên AM=DM
Do đó, M là trung điểm AD
a) xét tứ giác ACEO có :
\(\widehat{CAO}\) = 900 ( tính chất tiếp tuyến )
\(\widehat{CEO}\) = 900 ( tính chất tiếp tuyến )
ta có : \(\widehat{CAO}\) + \(\widehat{CEO}\) = 1800
mà hai góc này nằm ở vị trí đối nhau
==> tứ giác ACEO nội tiếp
hay bốn điểm A C E O cùng thuộc một đường tròn