Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAOM và ΔBOM có
OA=OB
\(\widehat{AOM}=\widehat{BOM}\)
OM chung
Do đó: ΔAOM=ΔBOM
a: ΔOAB cân tại O
mà OM là trung tuyến
nên OM vuông góc AB và OM là phân giác của góc AOB
Xét ΔHAB có
HM vừa là đường cao, vừa là trung tuyến
=>ΔHAB cân tại H
=>HA=HB
b: Xét ΔOEK có AB//HK
nên OA/OE=OB/OK
mà OA=OB
nên OE=OK
=>ΔOEK cân tại O
mà OH là phân giác
nên H là trung điểm của KE
x O y z A B M
a) xét \(\Delta AOM\)và \(\Delta BOM\)có
\(AO=BO\left(gt\right);\widehat{AOM}=\widehat{BOM}\left(gt\right);\)OM là cạnh chung
=>\(\Delta AOM\)=\(\Delta BOM\)(c-g-c)
=> AM = BM (hai cạnh tương ứng )
=> M là trung điểm của AB
b) vì AO = BO
=> \(\Delta ABO\)là tam giác cân
vì OM là phân giác của AB
=> OM vừa là đường cao của tam giác ABC
=> \(OM\perp AB\left(đpcm\right)\)
b) Xét 2 tg AOM và tg BOM có
OA=OB GT
OM chung GT
AM=BM vì M là TĐ AB
Suy ra tg AOM=tg BOM (c.c.c)
Suy ra góc OMA=góc OMB
Do OMB+OMA=180 độ kề bù
Suy ra góc OMB=OMA=180:2=90độ
Do đó OM vuông với AB
Đầu tiên bạn vẽ hình đã.
a) Xét 2 tam giác AMN và BMO có:
AM=MB(M là tđ của AB)
Góc AMN=góc BMO(đối đỉnh)
OM=ON(GT)
Suy ra tg AMN=tg BMO
Suy ra AN=OB
Ta có hình vẽ sau:
x O y M A B N 1 2
Xét ΔOAM và ΔOBM có:
OM: cạnh chung
OA = OB (gt)
MA = MB (gt)
\(\Rightarrow\) ΔOAM = ΔOBM (c-c-c)
\(\Rightarrow\) \(\widehat{O_1}\) = \(\widehat{O_2}\) ( 2 góc tương ứng)
\(\Rightarrow\) OM là tia phân giác của \(\widehat{xOy}\) (đpcm)
O A B K H x y 1 2
Cm : a) Xét t/giác OAH và t/giác OBK
có: \(\widehat{OHA}=\widehat{OKB}=90^0\) (gt)
OA = OB (gt)
\(\widehat{O}\) :chung
=> t/giác OAH = t/giác OBK (ch - gn)
b) Xét t/giác OMH và t/giác OMK
có: \(\widehat{OHM}=\widehat{OKM}=90^0\) (gt)
OH = OK (vì t/giác OAH = t/giác OBK)
OM : chung
=> t/giác OMH = t/giác OMK (ch - cgv)
=> \(\widehat{O_1}=\widehat{O_2}\) (2 góc t/ứng)
=> OM là tia p/giác của góc xOy