Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì 4n+3 phần 5n+4 là phân số tối giản
Gọi ưcln(4n+3;5n+4) là d
Gọi d là ƯCLN(15n+1,3n+1)
Hay 15n+1 chia hết cho d, 3n+1 chia hết cho d
Hay (15n+1-3n+1) chia hết cho d
Hay 12 chia hết cho d
Hay d thuộc ước của 12
Ư(12)={1;2;3;4;6;12}
Mà khi d=1 thì phân số trên sẽ không cùng chia hết cho một số bất kì nào nữa có nghĩa là khi đó d mới là phân số tối giản.
Mà d ở phân số trên có nhiều hơn 1 ước nên phân số trên không là phân số tối giản.
Ví dụ: nếu d=5 thì 15.5+1/3.5+1=76/16=19/4 chưa là phân số tối giản.
Kết luận:đề bài sai.
tk mình nha, mình rõ nhất
Gọi UCLN(2n+1,4n+6)=d
Ta có:2n+1 chia hết cho d
4n+6 chia hết cho d
=>2(2n+1) chia hết cho d
4n+6 chia hết cho d
=>4n+2 chia hết cho d
4n+6 chia hết cho d
=>(4n+6)-(4n+2) chia hết cho d
=>4 chia hết cho d
=>d={1,2,4}
Mà 4n+6 không chia hết cho 4
=>d={1,2}
Mà 2n+1 không chia hết cho 2
=>d=1
Vậy phân số \(\frac{2n+1}{4n+6}\) tối giản
Vì n và n+1 là 2 số liên tiếp
=>n và n+1 là 2 số nguyên tố cùng nhau
=>ƯCLN(n,n+1)=1
=>n/n+1 là phân số tối giản
Gọi d = ƯCLN(n;n+1) \(\Rightarrow\hept{\begin{cases}n⋮d\\n+1⋮d\end{cases}}\Rightarrow n+1-n⋮d\Rightarrow1⋮d\Rightarrow d=\pm1\)
Vậy \(\frac{n}{n+1}\)là phân số tối giản \(\forall n\in N\)
Gọi n là ƯC ( n + 1 ; 2n + 1 ) và n E N*
Suy ra n + 1 chia hết cho n
2n + 1 chia hết cho n
Vậy 2n + 2 chia hết cho n
2n + 1 chia hết cho n
nên (2n + 2) - (2n + 1) chia hết cho n
= 2n + 2 - 2n - 1 chia hết cho n
= 1 chia hết cho n suy ra n = 1
Vậy n + 1 và 2n + 1 là nguyên tố cùng nhau
Vậy \(\frac{n+1}{2n+1}\)là phân số tối giản
Gọi d là UCLN(n+1 ; 2n+1 )
\(\Rightarrow n+1⋮d\)và \(2n+1⋮d\)
\(\Rightarrow2.\left(n+1\right)⋮d\)hay \(2n+2⋮d\)
\(\Rightarrow2n+2-\left(2n+1\right)⋮d\)
\(\Rightarrow1⋮d\)
Vậy d = 1/-1 \(\Rightarrow dpcm\)
Ai thấy đúng thì ủng hộ
gọi ƯCLN(n,n+1)=d
=> \(n⋮d\) và \(n+1⋮d\)
=> \(\left[\left(n+1\right)-n\right]⋮d\)
=> \(1⋮d\)
=> \(d\in\left\{1;\left(-1\right)\right\}\)
Vì các phân số tối giản có ƯCLN của tử và mẫu là 1 và -1
=>\(\frac{n}{n+1}\) là phân số tối giản ( điều phải chứng minh)
ps tối giẩn thì tử và mẫu là 2 số nguyên tố cùng nhau mà n và n+1 liên tiếp nên là 2 ssos nguyên tố cùng nhau vậy n/ n+1 tối giản