Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1\)
\(A=11^9+11^8+11^7+...+11+1\)
\(\Rightarrow A=11^9+11^8+11^7+...+11^1+11^0\)
\(\Rightarrow A=\left(...1\right)+\left(...1\right)+\left(...1\right)+...+\left(...1\right)+1\)
\(\Rightarrow A=\left(.....0\right)⋮5\)
\(\text{Vậy }A⋮5\)
\(2\)
\(n^2+n+1=n.n+n.1+1=n\left(n+1\right)+1\)
\(\text{Mà n ( n + 1 ) là hai số liên tiếp nên chúng là số chãn}\)
\(\Rightarrow n\left(n+1\right)+1\text{là số lẻ}\)
\(\Rightarrow\left(n^2+n+1\right)⋮4̸\)
\(=\frac{1}{2}.\left(\frac{1}{2011}-\frac{1}{2009}+\frac{1}{2009}-....+\frac{1}{3}-1\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2011}-1\right)\)
\(=\frac{1}{2}.\frac{-2012}{2011}=\frac{-1006}{2011}\)
+ Với n =1
=> 71+2 +82.1+1 = 73 +83 = 855 =57.15 chia hết cho 57
+ Giải sử Đúng với n =k
=> 7k+2 + 82k+1 chia hết cho 57 (1)
+ Ta chứng minh Đúng với n =k +1
=> 7n+2 +82n+1 = 7k+1+2 +82(k+1)+1 = 7. 7k+2 + 82 . 82k+1 = 7( 7k+2 + 82k+1 ) + 57.82k+1
Mà theo (1) ; 7k+2 + 82k+1 chia hết cho 57 ; 57.82k+1 chia hết cho 57
=> 7n+2 +82n+1 chia hết cho 57