\(\dfrac{10-3n}{5-3n}\)

tìm n để M là số nguyên

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2021

M là số nguyên `<=> 10-3n \vdots 5-3n`

`<=> (5-3n)+5 \vdots (5-3n)`

`<=> 5 \vdots (5-3n)`

`<=> (5-3n) \in Ư(5)`

`<=> 5-3n \in {-5;5;-1;1}`

`<=> -3n \in {-10;0;-5;-4}`

`<=> n \in {10/3 ; 0 ; 5/3 ; 4/3}`

4 tháng 6 2021

Để M là số nguyên thì 10-3n⋮5-3n

5+5-3n⋮5-3n

5-3n⋮5-3n

⇒5⋮5-3n                           ⇒5-3n∈Ư(5)

Ư(5)={-1;1;-5;5}

⇒n∈{2;0}

 

26 tháng 2 2018

\(M=\frac{3n-5}{n+4}\) nguyên

\(\Leftrightarrow3n-5⋮n+4\)

\(\Rightarrow\left(3n+12\right)-12-5⋮n+4\)

\(\Rightarrow3\left(n+4\right)-17⋮n+4\)

      \(3\left(n+4\right)⋮n+4\)

\(\Rightarrow-17⋮n+4\)

\(\Rightarrow n+4\inƯ\left(17\right)\)

      \(n\in Z\Rightarrow n+4\in Z\)

\(\Rightarrow n+4\in\left\{-1;1;-17;17\right\}\)

\(\Rightarrow n\in\left\{-5;-3;-21;13\right\}\)

26 tháng 2 2018

Ta có M = \(\frac{3n-5}{n+4}\)là phân số   <=>  n + 4 \(\ne\)0

<=>  n \(\ne\)-4 

M là một số nguyên <=>  \(3n-5⋮n+4\)<=> \(3\left(n+4\right)-17\)\(⋮n+4\)

<=> \(17⋮n+4\)<=>  \(n+4\in\left\{-17;-1;1;17\right\}\)

<=>  \(n\in\left\{-21;-5;-3;13\right\}\)

7 tháng 1 2019

\(A=\frac{3n+1}{3n-4}=\frac{3n-4+5}{3n-4}=1+\frac{5}{3n-4}\)

Suy ra : A có giá trị là số nguyên \(\Leftrightarrow\frac{5}{3n-4}\inℤ\)

\(\Leftrightarrow5⋮3n-4\left(3n-4\inℤ\right)\)

\(\Leftrightarrow3n-4\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

Mà 3n - 4 chia 3 dư 2 \(\Rightarrow3n-4=-1;5\Rightarrow n=1;3\)

Vậy \(n=1;3\)

14 tháng 3 2018

Ta có : \(M=\frac{3\left(n+2\right)+5}{n+2}=3+\frac{5}{n+2}\)

=> \(M\in Z\) <=> \(\frac{5}{n+2}\in Z\) => \(n+2\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Giải ra ta được : \(n=\left\{-1;-3;3;-7\right\}\)

Vậy ...

15 tháng 2 2018

gọi d là ƯC(3n-2; 4n-3)

\(\Rightarrow\hept{\begin{cases}3n-2⋮d\\4n-3⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4\left(3n-2\right)⋮d\\3\left(4n-3\right)⋮d\end{cases}}\Rightarrow\hept{\begin{cases}12n-8⋮d\\12n-9⋮d\end{cases}}\)

\(\Rightarrow\) \(\left(12n-8\right)-\left(12n-9\right)\) \(⋮\) \(d\)

\(\Rightarrow\) \(12n-8-12n+9\) \(⋮\) \(d\)

\(\Rightarrow\) \(\left(12n-12n\right)+\left(9-8\right)\) \(⋮\) \(d\)

\(\Rightarrow\) \(0+1\) \(⋮\) \(d\)

\(\Rightarrow\) \(1\) \(⋮\) \(d\)

\(\Rightarrow\) \(d\inƯ\left(1\right)=1\)

\(\Rightarrow\) \(\text{3n-2 và 4n - 3 là 2 số nguyên tố cùng nhau}\)

\(\Rightarrow\) \(\frac{3n-2}{4n-3}\) là phân số tối giản

15 tháng 2 2018

1/ Đặt ƯCLN(3n - 2; 4n - 3) = d

=> \(3n-2⋮d\)và \(4n-3⋮d\)

hay \(4.\left(3n-2\right)⋮d\)và \(3.\left(4n-3\right)⋮d\)

hay \(12n-8⋮d\)và \(12n-9⋮d\)

\(\Leftrightarrow\left(12n-8\right)-\left(12n-9\right)⋮d\)

\(\Leftrightarrow12n-8-12n+9⋮d\)

\(\Leftrightarrow-8+9⋮d\)

Vậy \(1⋮d\)hay \(d\inƯ\left(1\right)=\left\{1\right\}\)

=> 3n - 2 và 4n - 3 là 2 số nguyên tố cùng nhau

=> phân số \(\frac{3n-2}{4n-3}\)tối giản.