\(\widehat{MNP}\) ( I ∈ MP)....">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔIMN và ΔIKN có

NM=NK

góc MNI=góc KNI

NI chung

=>ΔIMN=ΔIKN

=>góc IKN=90 độ

b:Xet ΔNKA vuông tại K và ΔNMP vuông tại M có

NK=NM

góc N chung

=>ΔNKA=ΔNMP

=>NA=NP

=>ΔNAP cân tại N

mà NI là phân giác

nên NI vuông góc PA

9 tháng 5 2023

loading...  

a) Xét hai tam giác vuông: ∆IMN và ∆IKN có:

IN chung

MNI = KNI (do NI là phân giác của ∠MNP)

⇒ ∆IMN = ∆IKN (cạnh huyền - góc nhọn)

b) ∆IKP vuông tại K

IP là cạnh huyền nên IP lớn nhất

IK < IP (1)

Do ∆IMN = ∆IKN (cmt)

⇒ MI = IK (2)

Từ (1) và (2)⇒ MI < IP

c) Xét hai tam giác vuông: ∆IKP và ∆IMQ có:

IM = IK (cmt)

∠PIK = ∠MIQ (đối đỉnh)

∆IKP = ∆IMQ (cạnh góc vuông - góc nhọn kề)

⇒ KP = MQ (hai cạnh tương ứng)  (3)

Do ∆IMN = ∆IKN (cmt)

⇒ MN = KN (hai cạnh tương ứng)   (4)

Từ (3) và (4) ⇒ KN + KP = MN + MQ

NP = NQ

⇒ ∆NPQ cân tại N

Lại có NI là phân giác của ∠MNP

⇒ NI là phân giác của ∠QNP

⇒ NI cũng là đường cao của ∆NPQ (tính chất tam giác cân)

⇒ ND ⊥ QP

9 tháng 5 2023

Giúp vs ạ mình đang cần gấp

a: Xét ΔNMI vuông tại M và ΔNKI vuông tại K co

NI chung

góc MNI=góc KNI

=>ΔNMI=ΔNKI

b: Xet ΔIMA vuông tại M và ΔIKP vuông tại K có

IM=IK

góc MIA=góc KIP
=>ΔIMA=ΔIKP

=>KI=IM

=>KI<IA

loading...  loading...  

1: Xét ΔNMI và ΔNEI co

NM=NE

góc MNI=góc ENI

NI chung

=>ΔNMI=ΔNEI

=>IM=IE

=>ΔIME cân tại I

2: góc KME+góc NEM=90 độ

góc PME+góc NME=90 độ

mà góc NEM=góc NME

nên góc KME=góc PME

=>ME là phân giác của góc KMP

3: góc MIQ=90 độ-góc MNI

góc MQI=góc NQK=90 độ-góc PNI

mà góc MNI=góc PNI

nên góc MIQ=góc MQI

=>ΔMIQ cân tại M

4: Xét ΔIMF vuông tại M và ΔIEP vuông tại E có

IM=IE

góc MIF=góc EIP

=>ΔIMF=ΔIEP

=>MF=EP

Xét ΔNFP có NM/MF=NE/EP

nên ME//FP

22 tháng 2 2023

thanks you bạn

 

20 tháng 12 2018

a)

Xét tam giác NMD và tam giác NED, có:

NM=EH(gt)

\(\widehat{MND}=\widehat{DNE}\)(do MD là phân giác MNE)

ND là cạnh chung

Suy ra: Tam giác NMD=tam giác NED (c.g.c)

==> \(\widehat{NMD}=\widehat{NED}\) (2 góc tương ứng)

b) Có: +) MN vuông góc MP

+) EH vuông góc MP

==> MN // EH

c) Có : MN // EH

==> MNP = HEP (2 góc đồng vị)

1: Xét ΔNMI vuông tại M và ΔNKI vuông tại K có 

NI chung

\(\widehat{MNI}=\widehat{KNI}\)

Do đó: ΔNMI=ΔNKI

Suy ra: NM=NK

hay ΔNMK cân tại N

2: Xét ΔMIQ vuông tại M và ΔKIP vuông tại K có

IM=IK

\(\widehat{MIQ}=\widehat{KIP}\)

Do đó: ΔMIQ=ΔKIP

Suy ra: MQ=KP

Ta có: NM+MQ=NQ

NK+KP=NP

mà NM=NK

và MQ=KP

nên NQ=NP

hayΔNQP cân tại N

3: Xét ΔNQP có 

NM/MQ=NK/KP

nên MK//QP