K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

b: Xét ΔABD có 

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔBAD

Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra NP//MQ và NP=MQ

Xét ΔADC có 

Q là trung điểm của AD

P là trung điểm của CD

Do đó: QP là đường trung bình của ΔADC

Suy ra: QP//AC

mà AC\(\perp\)BD

nên QP\(\perp\)BD

mà MQ//BD

nên MQ\(\perp\)QP

hay \(\widehat{MQP}=90^0\)

Xét tứ giác MQPN có 

MQ//NP

MQ=NP

Do đó: MQPN là hình bình hành

mà \(\widehat{MQP}=90^0\)

nên MQPN là hình chữ nhật

Xét tứ giác MQPN có 

\(\widehat{MQP}+\widehat{MNP}=180^0\)

Do đó: MQPN là tứ giác nội tiếp

hay M,Q,P,N cùng thuộc 1 đường tròn

a) Xét tứ giác BIEM có 

\(\widehat{IBM}\) và \(\widehat{IEM}\) là hai góc đối

\(\widehat{IBM}+\widehat{IEM}=180^0\)(\(90^0+90^0=180^0\))

Do đó: BIEM là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)

⇔B,I,E,M cùng thuộc 1 đường tròn(đpcm)

b) Ta có: ABCD là hình vuông(gt)

nên BD là tia phân giác của \(\widehat{ABC}\)(Định lí hình vuông)

⇔BE là tia phân giác của \(\widehat{ABC}\)

\(\widehat{ABD}=\dfrac{\widehat{ABC}}{2}=\dfrac{90^0}{2}=45^0\)

hay \(\widehat{IBE}=45^0\)

Ta có: BIEM là tứ giác nội tiếp(cmt)

nên \(\widehat{IBE}=\widehat{IME}\)(Định lí)

mà \(\widehat{IBE}=45^0\)(cmt)

nên \(\widehat{IME}=45^0\)

Vậy: \(\widehat{IME}=45^0\)

 

Bài 1 : Cho hình vuông ABCD có cạnh bằng 3 cm . Chứng minh rằng : 4 đỉnh của hình vuông ABCD cùng nằm trên 1 đường tròn . Hãy tính bán kính đường tròn đó Bài 2 : Cho tam giác nhọn ABC . Vẽ đường tròn tâm O , bán kính BC , nó cắt các cạnh AB, AC theo thứ tự ở D và E a)CMR: CD vuông góc với AB , BE vuông góc với AC b) gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc BCBài 3:Cho hình thang ABCD ,...
Đọc tiếp

Bài 1 : Cho hình vuông ABCD có cạnh bằng 3 cm . Chứng minh rằng : 4 đỉnh của hình vuông ABCD cùng nằm trên 1 đường tròn . Hãy tính bán kính đường tròn đó 

Bài 2 : Cho tam giác nhọn ABC . Vẽ đường tròn tâm O , bán kính BC , nó cắt các cạnh AB, AC theo thứ tự ở D và E 

a)CMR: CD vuông góc với AB , BE vuông góc với AC 

b) gọi K là giao điểm của BE và CD. Chứng minh AK vuông góc BC

Bài 3:Cho hình thang ABCD , AB//CD, AB<CD , có góc C=góc D=60 độ , CD=2AD . Chứng minh 4 điểm A, B, C, D cùng thuộc 1 đường tròn. Tính diện tích đường tròn đó biết CD=4cm 

Bài 4:Cho tam giác ABC vuông tại A. Trên AB, AC lần lượt lấy các điểm D, E . Gọi M, N, P, Q lần lượt là trung điểm của DE , EB, BC, CD. Chứng minh 4 điểm M, N, P, Q cùng thuộc 1 đường tròn 

 

2
11 tháng 11 2018

@ Trần Ngọc Huyền @  Em lần sau nhớ chia bài ra đăng nhiều lần nhé! . 

29 tháng 11 2019

Đồng ý với cô Nguyễn Thị Linh Chi

Đăng nhiều thế mới nhìn đã choáng