Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E I M P K F a x
a) Ta có tứ giác ABCD là hình vuông => AB=BC=CD=AD (=a)
Điểm I nằm trên AB => BI = AB - AI = a - x
Theo hệ quae ĐL Thales: \(\frac{BE}{AD}=\frac{BI}{AI}\Rightarrow BE=\frac{BI.AD}{AI}=\frac{\left(a-x\right).a}{x}=\frac{a^2-ax}{x}\)
Tương tự: \(\frac{AP}{BC}=\frac{AI}{BI}\Rightarrow AP=\frac{AI.BC}{BI}=\frac{ax}{a-x}\)
b) Ta thấy: AD // BC hay AD // CE => ^ADI = ^CED
Xét \(\Delta\)ADI và \(\Delta\)CED có: ^IAD = ^DCE (=900) ; ^ADI = ^CED => \(\Delta\)ADI ~ \(\Delta\)CED (g.g) (đpcm).
c) +) Áp dụng hệ quả ĐL Thales: \(\frac{PK}{AK}=\frac{BC}{BE}\). Mà \(\frac{BC}{BE}=\frac{DI}{EI}=\frac{PI}{CI}\)(Do BI//CD; EC//DP)
\(\Rightarrow\frac{PK}{AK}=\frac{PI}{CI}\)\(\Rightarrow\)IK // AC (ĐL Thales đảo) => ^AIK = ^BAC = 450 (So le trong)
Xét \(\Delta\)IAK: ^IAK = 900; ^AIK = 450 => \(\Delta\)IAK vuông cân tại A => AK=AI (đpcm).
+) Ta có IK // AC, AC vuông góc BD => IK vuông góc BD
Xét \(\Delta\)BDK: BI vuông góc DK (tại A); IK vuông góc BD; BI giao IK tại I => I là trực tâm \(\Delta\)BDK
=> DI vuông góc với BK. Hay DF vuông góc BK (đpcm).
Ta có góc ABE bằng góc ACI vì cùng phụ với góc AEB
\(\Delta ABE=\Delta ACI\left(g.c.g\right)\) \(\Rightarrow\hept{\begin{cases}BE=CI\\AE=AI\end{cases}\Rightarrow AI=AD\left(=AE\right)}\) Suy ra A là trung điểm của DI
Mà AN sng song DM song song CI nên theo địnhlí về đường trung bình của hình thang suy ra MN=NC
có đứa nào ngu như mày ko nguyen hai yen hahahahahah