Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D 2cm E 4cm 45
Kẻ \(BE\perp CD\)
Xét \(\Delta BEC\)vuông tại E có :
\(\widehat{BEC}=90^o\) ( theo cách vẽ )
Mà \(\widehat{C}=45^o\)(gt)
\(\Rightarrow\Delta BEC\)vuông cân tại E
\(\Rightarrow BE=EC\)( tính chất tam giác vuông cân )
Hay \(BE\perp DC\)(1)
Vì \(\widehat{D}=90^o\left(gt\right)\)
\(\Rightarrow AD\perp DC\left(2\right)\)
Từ (1) và (2) \(\Rightarrow AD//BE\)( từ vuông góc đến song song )
Hình thang \(ABED\) có \(AD//BE\left(cmt\right)\)
\(\Rightarrow AB=DE\)( theo nhận xét của hình thang )
Mà \(AB=2cm\left(gt\right)\)
\(\Rightarrow AB=DE=2cm\)
Ta có \(EC=CD-BE\)
\(\Rightarrow EC=4-2\)
\(\Rightarrow EC=2cm\)
Mà BE = EC (cmt)
\(\Rightarrow BE=2cm\)
\(\Rightarrow S_{ABCD}=\frac{1}{2}\left(AB+CD\right).BE=\frac{1}{2}.\left(2+4\right).2=\frac{1}{2}.6.2=6\left(cm^2\right)\)
Vậy \(S_{ABCD}=6\left(cm^2\right)\)
Chúc bạn học tốt !!!
a, \(\Delta HCI=\Delta DCI\left(ch-gn\right)\Rightarrow HI=DI=AI=\frac{1}{2}AD\)
\(\Delta AHD\)có đường trung tuyến \(HI=\frac{1}{2}AD\)
\(\Rightarrow\Delta AHD\)vuông tại H \(\Rightarrow\widehat{AHD}=90^0\)
b, \(\Delta AIB=\Delta HIB\left(ch-cgv\right)\Rightarrow\widehat{ABI}=\widehat{HBI}\)
Do đó: BI là tia p/g của \(\widehat{ABC}\)
Mà CI là tia phân giác của \(\widehat{BCD}\)
\(\widehat{ABC}+\widehat{BCD}=180^0\)
\(\Rightarrow\widehat{BIC}=90^0\)
c, \(\Delta HCI=\Delta DCI\left(cmt\right)\Rightarrow HC=DC\)(1)
\(\Delta ABI=\Delta HBI\left(cmt\right)\Rightarrow AB=HB\) (2)
Từ (1) và (2), ta được \(AB+DC=HB+HC=BC\)
Vì AB // CD nên \(\hept{\begin{cases}\widehat{A}+\widehat{D}=180^0\\\widehat{B}+\widehat{C}=180^0\end{cases}}\)(định lí hình thang)
Mà \(\widehat{A}=5\widehat{D}\)=> \(\widehat{5D}+\widehat{D}=180^0\)=> \(6\widehat{D}=180^0\)=> \(\widehat{D}=30^0\)(1)
Thay (1) vào \(\widehat{A}=5\widehat{D}\)ta có :
\(\widehat{A}=5\cdot30^0=150^0\)
Lại có : \(\widehat{B}=4\widehat{C}\)
=> \(4\widehat{C}+\widehat{C}=180^0\)
=> \(5\widehat{C}=180^0\)
=> \(\widehat{C}=36^0\)(2)
Thay (2) vào \(\widehat{B}=4\widehat{C}\)ta có :
=> \(\widehat{B}=4\cdot36^0=144^0\)
Vậy : ^A = 1500 , ^B = 1440 , ^C = 360 , ^D = 300
Hình tự vẽ nhé
a,
Gọi H là chân đường cao hạ từ C, ABCH là hình vuông
\(\Rightarrow CH=BC=\frac{AD}{2}\)
Tam giác CDH có:
\(\widehat{CHD=90^o;CH=HD}\)
\(\Rightarrow CHD\)là tam giác vuông cân tại H
\(\Rightarrow\widehat{CDH}=\widehat{HCD}=45^o\)
\(\Rightarrow\widehat{BCD}=90^o+45^o=135^o\)
b, Có CH = AH
\(\Rightarrow\)Tam giác AHC vuông cân tại H. Do đó \(\widehat{ACH}=45^o\)
Mà \(\widehat{HCD}=45^o\)
\(\Rightarrow\widehat{ACD}=45^o+45^o=90^o\)
Vậy \(AC\perp CD\)( đpcm )
Vì tứ giác ABCD có AB //CD
=> ABCD là hình thang
=> A+D = 180 độ
Mà A = 40 + D
=> 40 + D + D = 180 độ
=> 2D + 40 = 180 độ
=> 2D = 140 độ
=> D = 70 độ
=> A = 180 - 70 = 110 độ
Mà B + C = 180 độ
Mà B = 2C
=> 2C + C = 180 độ
=> 3C = 180 độ
=> C = 60 độ
=> B = 180 - 60 = 120 độ
1) \(\widehat{A}+\widehat{D}=180^O\)
=> \(\widehat{A}=180^O-60^O=120^O\)
2) \(\frac{\widehat{B}}{\widehat{D}}=\frac{4}{5}\)=> \(\widehat{B}=60.\frac{4}{5}=48^O\)
Ta có: \(\widehat{B}+\widehat{C}=180^o\)
=> \(\widehat{C}=180^o-48^{^{ }o}=132^o\)
A B C D H
Vì AB // CD nên \(\widehat{B}+\widehat{C}=180^o\)
Mà \(\widehat{B}=\widehat{C}\)
\(\Rightarrow\widehat{B}=\widehat{C}=\frac{180^o}{2}=90^o\)
\(\Rightarrow\)Tứ giác ABCH có 3 góc vuông là hình chữ nhật
Ta có : \(DH=DC-HC\)
\(=DC-AB\) (Vì AB = HC)
\(=4-3\)
\(=1\left(cm\right)\)
Lại có : \(\hept{\begin{cases}\widehat{A}=3\widehat{D}\\\widehat{A}+\widehat{D}=180^o\left(slt\right)\end{cases}\Rightarrow}\hept{\begin{cases}\widehat{A}=135^o\\\widehat{D}=45^o\end{cases}}\)
\(\Rightarrow\)△AHD vuông tại H có ^ADH = 45o
\(\Rightarrow\)△AHD vuông cân tại H
\(\Rightarrow\)AH = DH
\(\Rightarrow\)AH = 1 (cm)
Vậy \(S_{ABCD}=\frac{\left(AB+CD\right)\cdot AH}{2}=\frac{\left(4+3\right)\cdot1}{2}=3,5\left(cm^2\right)\)
Xét hình thang ABCD có \(AB//CD\)(gt) có:
\(\widehat{A}+\widehat{D}=180^0\)(trong cùng phía)
Mà \(\widehat{A}=3\widehat{D}\left(gt\right)\)
\(\Rightarrow3\widehat{D}+\widehat{D}=180^0\)
\(\Leftrightarrow4\widehat{D}=180^0\)
\(\Leftrightarrow\widehat{D}=45^0\)
\(\Rightarrow\widehat{A}=3.45^0=135^0\)
Ta có:\(AB//CD\left(gt\right)\)\(\Rightarrow\widehat{B}+\widehat{C}=180^0\)
Mà \(\widehat{B}=\widehat{C}\left(gt\right)\)\(\Rightarrow\widehat{B}+\widehat{B}=180^0\)
\(\Leftrightarrow2\widehat{B}=180^0\)
\(\Leftrightarrow\widehat{B}=90^0\Rightarrow\widehat{C}=90^0\)
Xét tứ giác ABCH có \(\widehat{B}=\widehat{C}=\widehat{H}=90^0\left(cmt\right)\)
\(\Rightarrow\)Tứ giác ABCH là hình chữ nhật (DHNB)
\(\Rightarrow AB=CH=3cm\)(t/c) \(\Rightarrow DH=CD-CH=4-3=1\left(cm\right)\)
Xét \(\Delta AHD\)có \(\widehat{H}=90^0,\widehat{D}=45^0\left(cmt\right)\)
\(\Rightarrow\Delta AHD\)vuông cân tại A (DHNB) \(\Rightarrow AH=DH=1cm\)(t/c)
Diện tích hình thang ABCD có:
\(S_{ABCD}=\frac{\left(AB+CD\right)\times AH}{2}=\frac{\left(3+4\right)\times1}{2}=3,5\left(cm^2\right)\)
Đáp số \(3,5cm^2\)
Học tốt
bạn xem nhìn được không