K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 6 2016

* Gọi M, N lần lượt là trung điểm của AB và CD

Khi đó, MN vuông AB,CD; IM=MA=MB, IN=ND=NC

IN=d(I, CD)= => IC=ID=

Đường tròn (C) tâm I, bán kính R=IC có phương trình: 

* Tọa độ C,D là nghiệm của hệ 2 phương trình:  và x-3y-3=0

=> y=1 or y=-1  Vì C có hoành độ dương nên C(6,1) và D(0,-1)

* S=45/2 <=> 1/2. MN.(AB+CD)=45/2

<=> MN(2IM+2IN)=45

<=> MN^2=45/2 => MN=

=> IM=MN-IN=

Mà AB//CD =>   => 

vói   => B(3,5) và C(6,1)

Vậy BC: 4x+3y-27=0

31 tháng 8 2016

Tại sao AB // CD thì lại suy ra đc tỉ lện kia hả bạn?

a: Xét tứ giác ABDE có

AB//DE

AB=DE

=>ABDE là hình bình hành

b: Xét ΔIAB và ΔICD có

góc IAB=góc ICD

góc AIB=góc CID

=>ΔIAB đồng dạng với ΔICD

=>IA/IC=IB/ID=AB/CD=3/14

=>IA/3=IC/14=(IA+IC)/(3+14)=15/17

=>IA=45/17cm; IC=210/17cm

c: IB/ID=3/14

=>IB/3=ID/14=(IB+ID)/(3+14)=8/17

=>ID=112/17(cm)

IC=210/17; ID=112/17; CD=14

IC^2+ID^2=(210/17)^2+(112/17)^2=196

CD^2=14^2=196

=>IC^2+ID^2=CD^2

=>ΔICD vuông tại I

d: S ABCD=1/2*AC*BD=1/2*8*15=4*15=60

NV
10 tháng 4 2021

Đường thẳng delta ở đây đóng vai trò là gì bạn?

 

19 tháng 5 2017

A B C D P M
a) \(\overrightarrow{MP}.\overrightarrow{BC}=\dfrac{1}{2}\left(\overrightarrow{MA}+\overrightarrow{MD}\right).\left(\overrightarrow{BM}+\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{MA}.\overrightarrow{BM}+\overrightarrow{MA}.\overrightarrow{MC}+\overrightarrow{MD}.\overrightarrow{BM}+\overrightarrow{MD}.\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{MA}.\overrightarrow{BM}+\overrightarrow{MA}.\overrightarrow{MC}-\overrightarrow{MB}.\overrightarrow{MD}+\overrightarrow{MD}.\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(\overrightarrow{MA}.\overrightarrow{BM}+\overrightarrow{MD}.\overrightarrow{MC}\right)\)
\(=\dfrac{1}{2}\left(0+0\right)=0\) (vì \(AC\perp BD\) nên \(\overrightarrow{MA}.\overrightarrow{BM}=0;\overrightarrow{MD}.\overrightarrow{MC}=0\)).
Vậy \(\overrightarrow{MP}.\overrightarrow{BC}=0\) nên \(MP\perp BC\).