Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D I K O
\(1,\hept{\begin{cases}OI//AB\Rightarrow\frac{OI}{AB}=\frac{OD}{BD}\\OI//CD\Rightarrow\frac{OI}{CD}=\frac{OA}{AC}\\AB//CD\Rightarrow\frac{OA}{AC}=\frac{OB}{BD}\end{cases}}\Rightarrow\frac{OI}{AB}+\frac{OI}{CD}=\frac{OD}{BD}+\frac{OA}{AC}=\frac{OD}{BD}+\frac{OB}{BD}=\frac{BD}{BD}=1\)
\(\hept{\begin{cases}OK//AB\Rightarrow\frac{OC}{AC}=\frac{OK}{AB}\\OK//CD\Rightarrow\frac{OK}{CD}=\frac{OB}{BD}\\\frac{CB}{BD}=\frac{OA}{AC}\end{cases}}\Rightarrow\frac{OK}{AB}+\frac{OK}{CD}=\frac{OC}{AC}+\frac{OB}{BD}=\frac{OC}{AC}+\frac{OA}{AC}=\frac{AC}{AC}=1\)
\(2,\hept{\begin{cases}\frac{OI}{AB}+\frac{OI}{CD}=1\\\frac{OK}{AB}+\frac{OK}{CD}=1\end{cases}}\Rightarrow\frac{OI}{AB}+\frac{OI}{CD}+\frac{OK}{AB}+\frac{OK}{CD}=2\)
\(\Leftrightarrow\frac{OI+OK}{AB}+\frac{OI+OK}{CD}=2\)
\(\Leftrightarrow\frac{IK}{AB}+\frac{IK}{CD}=2\)
\(\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{2}{IK}\left(đpcm\right)\)
Giúp mik bài này với: https://olm.vn/hoi-dap/detail/244594379058.html
a) Xét ΔOIC và ΔABC có:
\(\widehat{ACB}\) : góc chung
\(\widehat{OIC}=\widehat{ABC}\) (đồng vị do JI//AB(gt))
=> ΔOIC~ΔABC(g.g)
=>\(\frac{OI}{AB}=\frac{CI}{BC}\)
=> BC.OI=AB.CI
b) Theo định lý đảo của định lý ta-let vào ΔBDC :
=> \(\frac{OI}{DC}=\frac{BI}{BC}\)