Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D E F O
a, xét tam giác ODC có : AB // DC
=> OA/OC = OB/OD = AB/DC (đl)
có : AB = 4; DC = 9 (gt)
=> OA/OC = OB/OD = 4/9
B, xét tam giác ABD có : EO // AB (gt) => EO/AB = DO/DB (hệ quả) (1)
xét tam giác ABC có FO // AB (gt) => OF/AB = CO/CA (hệ quả) (2)
xét tam giác ODC có AB // DC (gt) => DO/DB = CO/CA (hệ quả) (3)
(1)(2)(3) => OE/AB = OF/AB
=> OE = OF
xét tam giác ABD có : EO // AB(Gt) => EO/AB = DE/AD (hệ quả) (4)
xét tam giác ADC có EO // DC (gt) => OE/DC = EA/AD (hệ quả) (5)
(4)(5) => EO/AB + EO/DC = DE/AD + AE/AD
=> EO(1/AB + 1/DC) = 1 (*)
xét tam giác ACB có FO // AB (gt) => OF/AB = FC/BC (hệ quả) (6)
xét tam giác BDC có OF // DC (gt) => OF/DC = BF/BC (hệ quả) (7)
(6)(7) => OF/AB + OF/DC = FC/BC + BF/BC
=> OF(1/AB + 1/DC) = 1 (**)
(*)(**) => OF(1/AB + 1/DC) + OE(1/AB + 1/DC) = 1 + 1
=> (OE + OF)(1/AB + 1/DC) = 2
=> EF(1/AB + 1/DC) = 2
=> 1/AB + 1/DC = 2/EF
A B C a O E F D
a, xét tam giác ABD có : EO // AB (Gt)
=> EO/AB = DO/DB (hệ quả) (1)
xét tam giác ABC có : OF // AB (gt)
=> OF/AB = OC/CA (hệ quả) (2)
xét tam giác ODC có : AB // DC (gt)
=> DO/DB = OC/CA (hệ quả) (3)
(1)(2)(3) => OE = OF
b, xét tam giác ABD có EO // AB (gt)
=> EO/AB = DE/AD (hệ quả) (4)
xét tam giác ACD có : EO // DC
=> EO/DC = EA/AD (hệ quả) (5)
(4)(5) => EO/AB + EO/DC = DE/AD + EA/AD
=> EO(1/AB + 1/BC) = AD/AD = 1 (*)
xét tam giác ACB có : FO // AB
=> OF/AB = FC/BC (hệ quả) (6)
xét tam giác BDC có : OF // DC
=> OF/DC = BF/BC (hệ quả) (7)
(6)(7) => OF/AB + OF/DC = FC/BC + BF/BC
=> OF(1/AB + 1/DC) = BC/BC = 1 (**)
(*)(**) => OF(1/AB + 1/CD) + OE(1/AB + 1/DC) = 2
=> (OF + OE)(1/AB + 1/DC) = 2
có OF + OE = EF
=> 1/AB + 1/DC = 2/EF
a: Xét ΔOAB và ΔOCD có
góc OAB=góc OCD
góc AOB=góc COD
=>ΔOAB đồng dạng vơi ΔOCD
=>OA/OC=OB/OD=AB/CD
=>OA*OD=OB*OC
b: OA/OC=AB/CD
=>OA/6=5/10=1/2
=>OA=3cm
Xet ΔADC có OE//DC
nên OE/DC=AO/AC
=>OE/10=3/(3+6)=3/9=1/3
=>OE=10/3cm
a: Xét ΔOAB và ΔOCD có
\(\widehat{OAB}=\widehat{OCD}\)(hai góc so le trong, AB//CD)
\(\widehat{AOB}=\widehat{COD}\)(hai góc đối đỉnh)
Do đó: ΔOAB\(\sim\)ΔOCD
=>\(\dfrac{OA}{OC}=\dfrac{OB}{OD}\)
=>\(\dfrac{OC}{OA}=\dfrac{OD}{OB}\)
=>\(\dfrac{OC}{OA}+1=\dfrac{OD}{OB}+1\)
=>\(\dfrac{OC+OA}{OA}=\dfrac{OD+OB}{OB}\)
=>\(\dfrac{AC}{OA}=\dfrac{BD}{OB}\)
=>\(\dfrac{OA}{AC}=\dfrac{OB}{BD}\)(2)
b: Xét ΔCAD có OE//AD
nên \(\dfrac{DE}{DC}=\dfrac{AO}{AC}\)(1)
Xét ΔBDC có OF//BC
nên \(\dfrac{CF}{CD}=\dfrac{BO}{BD}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\dfrac{DE}{DC}=\dfrac{CF}{CD}\)
=>DE=CF
b) Theo Thales: \(\dfrac{DE}{DC}=\dfrac{AO}{AC};\dfrac{CF}{CD}=\dfrac{BO}{BD}\)
Theo câu a thì \(\dfrac{AO}{AC}=\dfrac{BO}{BD}\) \(\Rightarrow\dfrac{DE}{DC}=\dfrac{CF}{CD}\Rightarrow DE=CF\) (đpcm)
c) Từ \(DE=CF\Rightarrow\dfrac{DE}{EF}=\dfrac{CF}{EF}\)
Mà theo Thales: \(\dfrac{DE}{EF}=\dfrac{IO}{OF};\dfrac{CF}{EF}=\dfrac{JO}{OE}\)
Do đó \(\dfrac{IO}{OF}=\dfrac{JO}{OE}\) \(\Rightarrow\) IJ//CD//AB
d) Dùng định lý Menelaus đảo nhé bạn. Ta có \(\dfrac{HA}{HD}=\dfrac{AB}{CD}=\dfrac{OA}{OC}\) nê \(\dfrac{HA}{AD}.\dfrac{OC}{OA}=1\). Do K là trung điểm EF mà \(DE=CF\) nên K cũng là trung điểm CD hay \(\dfrac{KD}{KC}=1\). Do đó \(\dfrac{HA}{AD}.\dfrac{KD}{KC}.\dfrac{OC}{OA}=1\). Theo định lý Menalaus đảo \(\Rightarrow\)H, O, K thẳng hàng (đpcm)
câu a,b dễ quá
c/Có: \(\frac{2}{EF}=\frac{2}{2OE}=\frac{1}{OE}\)
Ta có: \(\frac{OE}{AB}=\frac{DE}{AD}\left(1\right),\frac{OE}{CD}=\frac{AE}{AD}\left(2\right)\).Cộng (1) và (2) đc
\(OE\left(\frac{1}{AB}+\frac{1}{CD}\right)=\frac{DE+AE}{AD}\Leftrightarrow\frac{1}{AB}+\frac{1}{CD}=\frac{1}{OE}\)
Suy ra ĐPCM
Dùng Thales duy suy ra chặp là ra th, bạn gõ lên mạng là câu a,b trên google họ giải..nhát ghi qá